Category: Global warming
Episode 509 Hudson Bay Ice
Episode 509 Hudson Bay Ice
Metta Spencer 0:00
Hi, I’m Metta Spencer. Let’s go to the Arctic today, shall we? Vicariously, thank goodness because I have no desire to go up there in the flesh – unlike my friends, who seem to really be experts on northern affairs and don’t mind getting cold from time to time.
My friends are – actually, I have two experts with me, Professor Steven Salter, who is an engineering professor at the University of Edinburgh, a retired man who has been working on developing a nozzle to spray seawater, which we will get into in a bit. And in Turin, Italy, is Professor Peter Wadhams, who is one of the world’s leading authorities on Arctic sea ice. And they are going to help me understand some – Oh, here comes Paul Beckwith as well. Joining us, bless his heart, is Paul Beckwith, a Canadian climatologist who knows his way around the Arctic and climate affairs as well. Hello, Paul, how are you?
Paul Beckwith 1:14
Hi, I am good, thanks.
Metta Spencer 1:15
Good. Oh, you’re in outer space today. Good for you. And we are going to be doing something a little different. Today, we’re going to be talking about a particular proposal that I am going to be pitching, if you will, to the Canadian Pugwash group, which is an organization that I’ve belonged to for 30 – 40 years, maybe more. And, and this is a project that I’m hoping that the Canadian Pugwash Group will agree to investigate more closely, with the idea that if the organization and the committees investigating it, agree that it’s a worthwhile project and affordable and not too risky, then they will collectively try to encourage the Canadian government to take it on as a measure to reduce climate change in the planet.
So in preparation for my conversation, proposing this to the Canadian Pugwash group, I’ve invited any Canadian Pugwashites who want to do so to join us today by zoom, so that they can also participate in the conversation and ask questions, especially of the of the experts that have invited who are in a position to answer these questions much better than I am. I am not a scientist and can’t begin to pretend to answer most of these questions. But I have had a number of conversations with all three of the experts who are with me, Stephen Salter, Peter Wadhams, and Paul Beckwith. So I am familiar with the idea enough to believe, personally that it’s a promising solution that should be worth exploring. And, if we explore it further, I think probably other people will concur with my judgment that it’s, it’s worth maybe actually attempting on a major scale. So, here’s the basic idea.
Professor Salter will be able to explain how this works in a bit. But it seems that if the clouds surrounding the earth are white, they reflect light back into outer space and less light gets through to warm the planet than would be the case with dark clouds, which as we know, rain clouds are dark and heavy, heavy droplets of water, but white clouds have tiny, tiny droplets. So the idea is to change dark clouds into whiter clouds. And you can do this over particular area. So that the the surface of the planet below is thereby kept cooler. So, if we do this over the Arctic, it is possible to cool the Arctic Ocean or any other body of water that’s underneath. This is not something you would do over land, because there are too many other contaminating factors overland and besides which you probably want your sunshine to come in and be available for agriculture on land. That’s not the case so much over the water.
So, the idea of this proposal is Let’s take Hudson Bay, which is a very large body of water that is contained entirely within Canadian territory. Therefore, Canada alone can make the decision about what to do there. And let’s cool Hudson Bay by spraying seawater, into the clouds above Hudson Bay and cooling it, and you can cool it enough if you spray it right with the right kinds of droplets. We can cool it enough to keep some of the ice on the, on the surface of the water throughout the summer. I suppose you could keep all of it frozen if you spray it enough, but we don’t need to do that much.
Let’s do enough to retain some of the ice that is going to be desired by the the native people living around the shores because they make their living by going on to the water on ice and hunting and, and fishing and so on. So it’s their lives are very hard right now. And the wildlife and the seals and the polar bears and so on are in trouble. So we need to do something to preserve the ice on Hudson Bay. And my proposal is let’s see if we can do that and Stephen Salter is the man who would be able to put such a project into effect.
And we have with us Adele Buckley. Dr. Adele Buckley is a physicist and a longtime member of the Canadian Pugwash movement, where she’s taken a leading role for many years. She was on the international Pugwash council for a number of years. She is a physicist who has done work, especially on water issues. And also has been engaged with all of the concerns about nuclear weapons that the Pugwashites have focused on and has been very engaged with studying and promoting the notion of nuclear weapon free zone in the Arctic. So good morning, Adele.
Adele Buckley 7:35
Hello, everyone. I’m glad to be able to talk to you. And I want to say that I have a career experience quite a number of years in commercializing new technologies in the environment and that may apply to our discussion today.
Metta Spencer 7:54
Yeah, indeed, your you know your way around the business end of things. Thank you. Okay, Steven Salter, did I mislead anybody with my little introductory pitch? EvnarAnd, in any case, I’d like for you to to pick it up and, and go forward with with that. I see that we have a newcomer joining us, Evner Taran.
Stephen Salter 8:16
We need a few numbers, first of all, and the recent estimate of the climate problem is that we’re retaining about 1.7 watts per square meter of the earth too much. Okay, is a rather dim light bulb, but there’s a lot of square meters. Now the solar input coming in from the sun, you average it over the whole world and the whole 24 hours, that works out at about 340 watts per square meter. So, if you can do the arithmetic, you’ll see that our problem is just half a percent. Okay, half percent of the sun too much. Now, it’s uneven, of course, but that’s what the total average is.
Now, the reflectivity of clouds ranges from about 75%, to about 25%, of which we acquired a dark cloud. So the swing of reflectivity of clouds is far more than we need to solve the problem. And it was a chap who was very interested in the cloud reflectivity, when they found funny long streaks of cloud after where ships had been. And his name was Sean Twomey. He was able to get airplanes to fly over clouds and measure the power coming down from above from the sun and the power coming up from below. So, he was able to measure the cloud reflectivity and he was also able to fly into the cloud, scoop up the drops, and see how big they were and how many of them concentrations were and he did lots and lots of work like this.
And he produced the results, which boiled down to the fact that the cloud brightness depends on the size distribution of the drops. And if you have a lot of small drops, you get a white cloud. If you have the same amount of water in larger drops with a smaller number of them, then it’s dark. And you probably really knew that already, because you heard people say the dark storm clouds are gathering. And his work has been replicated, and it’s accepted. And you can do a lovely pocket demonstration here of two jars of glass balls. These ones here are four millimeters in diameter, and they look a bit gray, these ones here 40 microns, 100 times smaller. And you can see that these look white.
But then, next thing you need to know is that you can’t just get a drop forming in the cloud just because the relative humidity has got up to 100%. It has to be a little bit above 100. And the amount by which it is above that was studied by a chap called Kohler. He worked out how much extra humidity you needed for different sizes or different ways of condensation nuclei, which you need to get the growth of a drop started. And you can’t just have a drop forming from nothing. It has to be given something to begin with. And if you have rather small nuclei that you’ve squirted out, then the size of them varies according to what the local humidity is. And if it’s above a certain peak lump, it can get over this, and then it’ll grow without any limits at all. And you’ll end up making a raindrop
John Latham, who’s another chap knew all about Kohler he knew all about Twomey. And he thought that maybe we could increase the number of condensation nuclei enough to get a larger number of smaller drops. And he worked out all the calculations from Twomey’s equations. And he was amazed at how little water you needed to solve the climate problem. And it was really about 10, maybe 20 cubic meters of water a second if you could spray them with very, very small drops. And what would happen would be that the small drops would evaporate, and they’d leave a tiny little salt crystal, and Kohler says that salt is almost the best condensation material that you can get to make a new cloud drop so that the idea was to, to spray to increase the number concentration of drops in clouds over the sea.
You can’t do it over land because the air there’s already so much dirtier that you can’t really add any more nuclei; there’s far more than you need. And at the time, I was working on a way to try and make the sea evaporate faster by trying to increase the area available for reparation with a spray. John Latham heard about that and telephoned me and said, Can you make the spray for my project? And I said, Yes, I think I can do that. I didn’t know how hard it was going to be. But I was overconfident. This was in 2004. And I’ve been working on the engineering of how to do that, more or less full time since then.
Metta Spencer 9:30
The idea is, you need to make a nozzle that will spray finer than any living creature has ever invented before?
Stephen Salter 14:15
No, the viruses are smaller than this. The size of salt, we want to make is 10 to the minus 14 grams and a COVID viruses is about a 10th of that. And we will be using technology which was developed to filter seawater to get rid of polio viruses, which were about 30 nanometers. So there are living organisms that are smaller than that.
Metta Spencer 14:48
Okay, now, here’s my notion of the game plan. If everybody finds that this is a reasonable thing to do, we would ask the Canadian government to fund a situation where you will finish developing this very special kind of nozzle so that you can spray seawater and we will set up stations like four different places around the coast or the shore of Hudson Bay where the ice melts throughout the summer now and causes a lot of trouble for the indigenous people.
So we will ask the indigenous people where they would like to have this ice restored and set up places on the shore spraying seawater over Hudson Bay into the clouds so that we cool the water and retain some ice on the bay where they want it to be throughout the summers. And of course, then, of course it freezes in the winter. And as I understand it, you think that it would cost something like $30 million to do this?
Stephen Salter 16:14
Yes, I think, especially if we could do it from land rather than at sea. Eventually, we want to do it in the middle of Pacific. So we do want to do it where there’s clean air and where we can take ships. But we could do some experiments, if we’ve got a place where there’s clean air coming in, and we can add our aerosol to it. Making the ships is a bit more expensive than $30 million. But we wouldn’t need to. We could learn some useful stuff without that.
Metta Spencer 16:46
Well, I think also, the idea is that this would be in a way a demonstration project. Because if we can show that it can be done on Hudson Bay, it can also be done in some places or throughout the entire Arctic Ocean. And that’s too big a project for Canada alone to undertake. But if it’s demonstrated to be workable, then other countries may collectively join together in an attempt to a much bigger project.
Stephen Salter 17:18
Yes, that’s right. The key thing is that the people who live there have got to decide how much ice they want. When if they decided that they don’t like it, they’ll tell us where to stop and in a few days, really the next time it rains or snows, the cooling effect will fade away. So very, very soon you’ll be back to where you were.
Metta Spencer 17:40
Okay, good. Let’s ask Peter Wadhams his thoughts about this, and then I’ll get to Paul Beckwith to comment on what we’ve decided so far. Peter Wadhams is an expert on Arctic sea ice. And so tell us why that might be desirable? Or what might be some of the risks or costs or dangers or downside if there are any, for such a project?
Peter Wadhams 18:15
Well, I think one of the main problems as people have identified about the Arctic is the fact that we, we really don’t want the ice to disappear. Because it is disappearing. And that’s bringing about some really serious consequences for the planet involving thawing of permafrost, rising sea level, a whole kind of gigantic horror film of things that are bad, that are happening because the sea ice is disappearing.
So, the strong need is to stop the sea ice from disappearing, to bring to bring it back and or cool the Arctic to a point where it doesn’t disappear, and can therefore supply a permanent presence in the Arctic. Now, the difficulty of doing this is that most of the methods that people think of to do it are impractical, and can’t be scaled up to this to the scale that we need for for keeping the entire Arctic cool or cold or frozen. And some of them are actually well, one could say bonkers, but there are lots of other ideas which do require checking out on a large scale.
The one that is I think most promising is this one, which Stephen has been talking about: marine cloud brightening, because all the other techniques talk about really trying to keep the surface of the Earth frozen. Bu marine cloud brightening is really consisting of simply trying to cool the atmosphere to the point where you don’t have the kind of rapid melt which is going to cause all of these really terrible effects. So, I think it’s a very good way to proceed and to try and put in a lot of experimental work on a large scale is which is needed to see if we can actually make this work. I mean, Stephen’s work has been so meticulous over the years that really one can almost see what is going to come out. And if one can see what’s going to come out and what’s going to come out is actually something that really will help to preserve the Arctic, then this makes marine cloud brightening something that really should be proceeded on with a high priority amongst all the spectrum of ice preservation methods that have been suggested. This is I feel, the one that is most sensible and most likely to be successful. So, I would say we should go on that with high priority.
Metta Spencer 21:54
Let’s reinforce a certain point, which I think is that almost all of the other measures that have been proposed as ways of cooling the planet involve the reduction of carbon from the atmosphere. Now this is one of the technologies that will not reduce carbon from the atmosphere, it’s going to actually cool the planet directly by simply shading the planet. It’s not going to do a single thing in terms of reducing the carbon. We have to handle that in other ways. And we are handling it in other ways, or at least, maybe not as fast as we should, but we know what to do, right? This is a different method that will give us a little extra time to do that. I see two hands wanting to comment.
Stephen Salter 22:52
Just a quick thing, we need a few more numbers. The key thing is to work out how much energy is reflected by a cloud drop. And that depends on how much energy is coming into it and what its diameter is and how long it lasts. And you can compare that with the amount of energy you need to make the condensation nuclei, on which the cloud drops had been growing.
That depends on the surface area of the cloud drop and the surface tension of the seawater. Okay, it’s not very efficient yet, but those are the two numbers you start with. And if you look at those two numbers, the difference, the ratio is enormous. I mean, it’s 25 billion. There’s no other mechanism that I can think of that has such an enormous energy ratio. I suppose you could think about a detonator that lets drop a nuclear bomb. But I’ve got number here. We’re trying to control an energy flow that’s 100 times the American electricity consumption. Okay. And you need to have this incredible leverage in order to do that. And we can do that because of the surface tension to reflection ratio.
Adele Buckley 24:21
I have a hell of a long list of questions. But I might ask, once you had the artificial White Cloud in place, how long would it last?
Stephen Salter 24:35
It lasts until it rains or snows.
Adele Buckley 24:38
I see. Well, I just read an article yesterday that there’s expected to be a lot more rain in the Arctic instead of snow. Because
Stephen Salter 24:49
Yeah, it lasts until whatever washes it out.
Adele Buckley 24:52
Yeah. Metta likes to envisage all of Hudson Bay as a kind of nice little place, but it’s actually huge. How many stations would you possibly need to even begin to deal with forming ice on Hudson Bay? And I wonder who is working on this area in Canada that can work with you?
Stephen Salter 25:31
Well, the calculation depends on how much energy is involved with the rate of melting of the ice. Now, for the Arctic, when I first looked at this, it was 25,000 tons of ice a second. It’s a bit lower than that. Now, maybe because there’s less just to melt. And if you know, the weight per second of the ice that’s being lost. And you know, the latent heat of freezing of ice, you know how many joules you’ve got to deal with. And then if you know what the solar energy coming in is, you can work out how much you need to change that by in order to give you the the missing joules. And fortunately, in that for a short time, there’s actually more solar energy coming into the North Pole and into the equator because it’s coming in over 24 hours.
If you know those numbers, you can work out how many nuclei you need to spray to do it. I will send you the calculations, and you can adjust any of the assumptions that are put in and you will see what is it is, but you’ll be surprised at how small it is. And it’s because of its enormous ratio of the energy to make a drop, and then the energy that it will reflect. And there’ll be there, they fall very, very slowly. They will be there until they’re washed out by rain. And that will be maybe one or two or three days. In some parts of the world, it will be a bit longer, but that’s roughly the time so you have to keep doing it. And maybe that’s a good thing, because it allows you to control and stop when you had enough.
Adele Buckley 27:22
I wonder if these clouds are near the shore? And can you then envisage, they’re there for a long time, and there’s no sun in the communities near the seashore. And they don’t like that?
Stephen Salter 27:41
We’re trying to change the reflectivity by probably 5%. Because we can’t do it everywhere. We’ll say we got to get it for 5%. Now, if you draw a series of bars of different gray, I can send you one where I’ve got 20 bars, and they’ve got a 5% difference in contrast between each bar. And the test is how many bars do you have to see which way the gradient is and most people need three or four bars, which means that they can’t detect a change of less than about 15 or 20%. So you wouldn’t notice at all that the clouds were a little bit whiter.
Metta Spencer 28:33
Okay, and I think she asked how many stations. I think you were suggesting maybe four different stations. And these can be simple things like you could bring in shipping container things and plant them on the shore with some sort of wind turbine to power the nozzle and, and the other electronic equipment and hire local indigenous persons to monitor each of these stations, which would be placed wherever it would be appropriate in order to freeze the local ice that the local people want to have restored. Am I correct about that, Stephen?
Stephen Salter 29:25
Yes, well, you’ve got the wind blowing the spray along a long line, quite a narrow line. And you’ll be getting cooling all the way along that line. And that could be halfway, maybe more, across the bay. And when the wind changes direction it will cool somewhere else. And what we would do would be to look with a satellite at the patterns of clouds. And we would need to get perhaps 100 different images of a satellite and we would align them to suit the wind direction. And then we would just add them up and you can then see by averaging at least 100 satellite images that there’d been a change in the reflectivity. And I can send you some calculations where we’re simulating this, and you wouldn’t see it on any one of the images but you would see it if you could align them and add them together.
Adele Buckley 30:23
Okay. I just wanted to ask: Is anyone in Canada working on this, or working on something similar that you might work with? Obviously, you’re not located here. And if you were to set up some kind of trial, that would involve you doing lots of travel to remote parts of Canada, that doesn’t sound very flexible.
Stephen Salter 30:52
It’s got it’s got to be done by Canadians. And there will be some work that will need people who are actually living there all the time. And what we’d need to do would be to train them how to look after and check and report on how the spraying was going. So we’ll be doing a bit of engineering training as well.
Metta Spencer 31:18
I know that this would be largely indigenous people, and it be great to give them some jobs because most of them are unemployed now. But Peter Wadhams, I think you were instrumental in setting up a very sophisticated Marine Laboratory in Churchill, Manitoba. Right? And if you’d speak to that as a location to be the headquarters for this research project.
Peter Wadhams 31:45
Yes, because if we’re talking Hudson’s Bay, then the only sea ice laboratory in the Hudson’s Bay area is this one that was built quite recently, in fact, they haven’t finished building it yet, for the University of Manitoba. So I think my only role was to vote in favor of spending Canadian government money on that, rather than something else. And the first director was a real ball of fire, called David Barber. Very, very good scientist. Unfortunately, he died this year. I’m hoping that they can get themselves sorted out so they can carry on.
But it’s a wonderful lab. It’s open to the bay. So you can do experiments, where you’re, you’re doing things to the ice, doing things to water in the bay, and it’s linked in with the rest of the water of the bay. So it’s very nice laboratory. It’s owned by the University of Manitoba, but they have lots of visiting scientists coming in. So I think that if they can be persuaded to make that one of their major projects, that will be a very nice base for some of the work that
Stephen Salter 33:18
We’d want to be far enough away that we didn’t get any contamination from whatever power generation they’ve got. So if you can think of long plumes of smoke coming out of the lab, we want to be to one side of that.
Peter Wadhams 33:35
Right. Yeah.
Metta Spencer 33:37
Well, they certainly have a large staff. I looked it up on their website, they have a lot of professionals working there. Okay, I want to go on and talk to Paul Beckwith, because, although I’ve had conversations about this topic with Stephen and Peter, before, I haven’t really talked to Paul about it, but you’re certainly the expert on the Canadian Arctic, among other things. So chime in and give your thoughts about this matter, Paul.
Paul Beckwith 34:07
Okay. Well, first of all, I think this is a great idea. I think this is a great project. I think we could learn an awful lot from it and actually even preserve some of the ice in Hudson’s Bay. A couple points I’d like to make is, you know, we’re marine cloud brightening has gone on for years and years inadvertently, because any commercial ships that traverse the ocean, put up aerosols and particles from their smokestacks. And these aerosols and particles from the ship tracks modify the clouds and the radiative forcing in the lines of clouds.
A recent paper which I just did a video on, called, “Oops, global dimming is a lot more significant than we thought.” Okay, the idea of global dimming is that we know that the radiative forcing from greenhouse gases is somewhat offset by the amount of aerosols in the atmosphere, both through a direct effect and an indirect effect. So, the direct effect is that these aerosols block some of the sunlight coming in and cause a cooling on the surface. And the indirect effect is these aerosols act as cloud condensation nuclei, increasing the low-level cloud cover, blocking some sunlight, causing some cooling.
The net effect of these two direct and indirect radiative effects is thought to be something like minus 1.2, or 1.4 watts per square meter. Now, that number is often determined by these experiments on these ship tracks. Because we can measure the water vapor in the atmosphere from satellites, we can measure the clouds, and we know where the ships go, okay, they’re there, their passage is very well known, their course. So if we take their course, and then we use the prevailing winds to move the ship tracks to a different location based on the prevailing winds at the time that the satellite passes overhead. So, we can take the location of the advected cloud tracks, and we can correlate them with the satellite data, which measures the reflectivity so we can get a number on how much radiative forcing is being offset by the so-called global dimming or aerosol effect.
Now, a recent paper that just came out, which I discussed in detail in my video I posted just a couple of days ago, says that number, what we thought the negative radiative forcing was, is actually a lot larger than we thought. And the reason is, is because they were only using visible ship tracks that they could see on the satellite, but the ships are moving along their course. And they’re putting out these particles. And more often than not, there’s no clouds, above the ship tracks, the particles are put in the air, but no clouds develop. So when you account for that effect properly, the radiative forcing offset or the global dimming effect is about 40 or 50% larger than the mainstream number, the present sciences. This is a huge factor, because what it means is the climate models need to be readjusted with the proper numbers. It also means that the equilibrium climate sensitivity, which is the warming we would expect with a doubling of co2, it means that that number is worse than we thought.
The temperature will go up more. The really good thing is that it means that the work that Stephen Salter is talking about — the deployment of these aerosols will have an even larger effect than he even expects, perhaps, but certainly more than mainstream science expects.
Now this is one paper, but it was very well done. It needs to be confirmed. The aerosol cloud interaction is one of the largest uncertainties in climate science in terms of getting decent models. So I would argue that an experiment, the work in Hudson’s Bay, for example, the deployment of such systems would allow us to get much better numbers on the aerosol cloud interaction. And it would allow us to greatly improve all climate models and it would allow us to get a much better handle on equilibrium climate sensitivity.
The other thing is that, having a shipping container type lab that could be with a twin turbine to power it, could be put on a location and could actually be moved if we wanted, you know, by say a heavy lift helicopter or something. So it could be moved to whatever location we wanted as part of the experiment. Also, clearly you want it to be upwind of Hudson’s Bay. So typically the prevailing winds, blowing from west to east. You would want to locate these labs, these four units on the western side shores of Hudson’s Bay, farther north in remote regions. But they’re remote to us. I mean, there’s indigenous people living up there.
So, I think it’s a fantastic idea. And I think it will improve our knowledge of aerosol cloud interactions, which is the largest uncertainty in climate change. And, you know, it will, I think, First Nations people that have their lifestyle restored by sea ice, you know, and the seals and the polar bears, etc, you know, would be a very good thing.
I’d also like to point out one other thing. Going the route of the indigenous people is a fantastic idea, because we don’t necessarily have to get the buy-in of the Canadian government. We just have to get the buy-in of groups of First Nations that live along Hudson’s Bay, and the source of money. And I would argue that there has been there’s a precedent for this in that, in 2002, Russ George had contracts with First Nations people of Vancouver, Haida Gwai. And he they got funding, they got all the permits and approval from the Canadian government.
They put iron in the ocean off the coast of Vancouver, which stimulated phytoplankton. Salmon was at record levels of runs the year after, and then the Canadian government decided that they wanted to close this thing down. But they didn’t need money or approval, they just needed permits. It was the actual First Nations groups that wanted the project to be done to restore their salmon fishing. So, there are precedents of this being done through that mechanism — using First Nations buy-in. There are much less people you need to convince that this is a good project, assuming you can get get the funding from somewhere.
Stephen Salter 42:12
You can also leave the wind turbine behind when we finish.
Metta Spencer 42:18
I’m hoping to get in touch with some leaders of indigenous people living on the west side of the Hudson Bay, Somebody told me yesterday that you could take the entire British Isles and put five of them into Hudson Bay. It’s that size! So the people living on the east side are not necessarily familiar with the people living on the west side, but I expect it’s the people on the west side, in Manitoba and Ontario, that we would want to deal with most and who would be asking us to put the ice where they want it. And so we would need to be in touch with them.
I’m not acquainted with any leaders, I hope that there is some sort of network or movement or organization of indigenous people already existing so that we could contact them rather than — we’re not in a position obviously to organize their interactions or to deal with them separately. So Paul, or anybody else, if you’re familiar with any organization that is working with groups of people in that area, then let me know.
Paul Beckwith 43:35
I do know some people in the Winnipeg area that work a lot with First Nations in all different regions of Manitoba. Of course, Churchill’s in Manitoba. The other thing, there’s a lot of other benefits of trying this project. And there’s huge amounts of coastal erosion from increased wave action in Hudson’s Bay with lack of ice. So if you restore ice along bays and some coastlines, you can prevent this coastal erosion from occurring, which is actually destroying some First Nations settlements, etc, along the coast. And I’m talking about huge amounts of coastal erosion, like, like even hundreds of meters per year in some cases. A big storm comes through Hudson Bay, and then it does tremendous coastal damage because of the lack of sea ice on the bay.
Metta Spencer 44:37
Well, there’s an additional thing that Steven sent me a couple of weeks ago, an article with a map showing that the coastal region around the southwest part of Hudson Bay is a wetland, largely peat, and it has recently been emitting large amounts of methane. So that is another reason to believe that if we did freeze the coastal area of the bay, that this would reduce the melting of the permafrost in the wetlands and reduce the terrible emissions of methane. Does anybody know? I don’t have that at hand today, but I might be able to find that map if anybody knows anything about that movement, because it is apparently quite alarming.
Peter Wadhams 45:39
Now, just an aside. If you want to get a feel for the size of Hudson Bay, it’s just off the corner of Paul’s armchair.
Paul Beckwith 45:50
(pointing to the map behind him). Churchill’s up here. Churchill is where I’m pointing the pen. This is James Bay. And, you know, the winds are mostly west to east. So you’d want stations spaced here, maybe one in Churchill, maybe one just south of Churchill on this stretch? It depends. I don’t know if — Stephen, have you looked at the aerosol concentration, typically over Hudson’s Bay at all?
Stephen Salter 46:24
I don’t have a number for it, but I will get it.
Paul Beckwith 46:28
Because, you know, from the satellites, it isn’t a viable place. You might have to spray with a lot more aerosols, because there might be some aerosols blowing naturally off the land.
Stephen Salter 46:40
The air will be very clean if it’s just been raining or snowing. There may be times when it’s too dirty and times when it’s fine. Right. Another interesting thing is that the water in Hudson’s Bay is less saline. And that actually is to our advantage, because what matters is the massive salt in the nuclei. So if you have fresher water, you have bigger drops. And it’s making very small drops that’s the technical challenge. So we’ve got a nice reason why we would like to use rather fresh water. We need the salt in the end, it must have some salt, but the less we have, the easier it is to make the drops.
The number of nozzles that we need is really enormous. We make them in a silicon wafer like a microchip and we get 200 million nozzles in an eight-inch wafer. And the chips I’m using will have 30 of those wafers. So let me tell you, we got an enormous number of nozzles. But not replication, people don’t mind very big numbers provided everything is very flat.
Paul Beckwith 47:52
There are islands here. Okay, there’s Belcher island down here. There’s an island down here, there’s some islands up here, I don’t know if there’s some islands up in this region. But you don’t necessarily have to put the stations on the coastline. You know, if they were pretty autonomous, they could go on an island and that would be probably a better thing to do.
Stephen Salter 48:14
As long as the air is clean it doesn’t matter. It could be iced over and snowed over.
Paul Beckwith 48:21
Right. So it’s just another thought.
Metta Spencer 48:24
Your idea is wind turbines that would power the whole thing, right? You spray these things using the energy from wind turbines that you can just tow in there. I know Adele has questions so I’ll defer to her.
Adele Buckley 48:47
Well, I guess I’m interested in the timeframes. Will it be anywhere near soon enough and supposing that miraculously you raise money for a demonstration project, you can’t really start until you know you have the money to build multiple nozzles, which, you know, certainly, it seems to be many, many of them. Who will make them? Then how long before in the ideal world from the day you have money till the day you are actually spraying on Hudson Bay?
Stephen Salter 49:32
I would guess about five years if you had plenty of money. And if you got zero it takes a bit longer. But five years is is a guess.
Adele Buckley 49:45
That’s the first the first trial. It’s not a satellite station
Stephen Salter 49:49
And you would probably have most of the answers in the first year. Because we want to do this in the summertime.
Adele Buckley 49:59
Okay, we’re going to do a lot more of them. So now we get to the point where perhaps the 10 years have elapsed.
Paul Beckwith 50:10
Depends on the resource.
Unknown Speaker 50:12
Someone says, Yeah, let’s try this in the Pacific. Anyway, time is marching on. And by this time we’re not we’re at, you know, 2035 or something. And is it too late to be doing this?
Peter Wadhams 50:28
What do you mean too late, I guess?
Stephen Salter 50:31
Well, the longer we leave it, the more important it is to do it. I suppose if there’s a complete collapse of civilization so that we can’t do it anymore, then that’s one of the boundary conditions. But I’ve been working on it since 2004. And please don’t blame me if it’s late. The progress-to-cost ratio, which is what really matters in these things, is infinite. Because I hadn’t had any money.
Adele Buckley 51:08
Local people would continue repeating the spraying as they see the conditions. And as the satellite information comes to them, I think I think that’s approximately right. But I wonder if the ice is sort of stable in the sense that you could actually use it in the traditional Inuit way? Would it be dangerous, because obviously, there would be times when the ice wasn’t stable, it was continuing to try to warm, there would be a lot of concern, in my view of like going out on the ice to do anything.
Stephen Salter 51:56
The guys who live there will be very good at judging whether it’s safe to go on the ice. I mean, they need that to survive. I would let them decide whether it was thick enough to walk on.
Adele Buckley 52:14
They’d have to rely on their colleagues, if you’d like to, okay, we have to keep doing this. Or the people that are out on the ice will have trouble.
Stephen Salter 52:25
I think we could find a way to measure the ice thickness, perhaps even measure it from a satellite. Maybe Peter Wadhams would tell us about that. But it ought to be possible to tell them what the ice thickness is and let them decide.
Paul Beckwith 52:39
We can measure the thickness from satellite. So latest satellites, the thing that throws it off is when there’s melt lines on the surface of the ice. That can throw those numbers off. So as ice is, you know, in the spring, perhaps the accuracy is not as good as it would be in other times. The satellite can measure freeboard, for example, you can measure the distance to the ice, and then the distance to open water right next to the ice. And from that difference, you know, can measure the freeboard, it knows how thick the ice is.
Metta Spencer 53:14
The native people already are having a lot of grief because of the melting ice, that’s, of course, it’s frozen in the winter, and then then it’s not behaving the way it used to 30 years ago, and therefore it’s more dangerous for them.
Also, there are other things about their livelihood being affected adversely. Because of the salinity of the water or temperature something, the seals used to float. So they’d harpoon a seal and then drag it into the boat. But they can’t do that anymore, because the seals now sink before they can reach it. And another detrimental thing has to do with the polar bears, which are not reproducing normally. Most of the pregnant polar bears don’t give birth anymore. I don’t know what happens but it’s it’s detrimental. So we need to restore ice for the livelihood of the people living in that area. They have a strong claim for that and we have to work closely with them. It’s not our business to tell them what they need. They tell us what they need and where they want their ice and we’ll see what we can do.
Paul Beckwith 54:32
And another factor is, if you’re cooling large portion of Hudson’s Bay, that cold airmass does move over land. Right? So you will actually cool surrounding land areas.
Adele Buckley 54:48
There’s something about what happens to the sun during all of this. Because human beings need sunshine for their own mental health and are we anticipating not seeing the sun? Or what are we doing?
Stephen Salter 55:05
The difference would be undetectable. They won’t know. There’s an enormous difference between summer and winter, so the tiny, tiny, difference in the half a percent, maybe one or two, maybe 5, is not detectable.
Adele Buckley 55:23
That sounds reassuring. How many stations around Hudson Bay, just roughly, would you would you think would would be desirable? In the best of all worlds?
Stephen Salter 55:35
Well, we need to do it in the mid summer. That’s when we may get the best effect from increasing the reflectivity. So we’ll be doing it May, June, July.
Paul Beckwith 55:50
So, I’d say one station to start off. So you need one station, one station is to reactivate difference. And then there’s a scramble to make as many stations as possible because it works so well.
Stephen Salter 56:02
Yeah, yeah. Well, my very first one.
Paul Beckwith 56:06
So one station would be — you said we’d be about 30 million. Would you say about 10 million for one?
Stephen Salter 56:16
I don’t think it’s proportional to the number at all. I think doing anything is going to be 20 or 30 million. And whether you want five or 10 stations really isn’t much extra.
Peter Wadhams 56:32
But those those costs are actually very tiny. That was it. They’re big for science, but they’re tiny compared to say, the money being squandered every day by the British government on various weirdo projects.
Metta Spencer 56:48
I hope that we can talk the Canadian government into this. I don’t see myself going around with a can hoping people will put their pennies into it and collect the money for this independently. If the government isn’t ready to support it, we can’t. I don’t see the Canadian Pugwash group doing it.
But I think it’s very reasonable thing if we show the financial and other benefits and in fact, since Biden has put through this Inflation Reduction Act with a lot of money for climate change interventions in the US, all of a sudden, there’s new pressure on the Canadian government to step up and do more as well. Canada has not been putting that kind of money into trying to reduce the climate crisis. And this, plus three other measures that I have chosen in my own infinite wisdom about these matters. I have chosen ones that I think can be done within five years. And all of them could be sponsored by or promoted by the Canadian government. This one would probably be one of the most expensive, but it’s something like $30 million is affordable. The Canadian government can handle that without any trouble. Right?
Stephen Salter 58:18
The biggest money return would be moderating hurricanes. People in Florida would agree with this at the moment. And what we would do would be to have ships cruising in the Atlantic between the Gulf of Mexico and Africa. The Hurricanes start over on the African side. And they would be cruising around and measuring the sea surface temperature and trying to reduce it to the point which was a temperature set by the the joint views of all the governments in the Gulf of Mexico. And if you look at the benefit-cost ratio of this, knocking the sea surface temperature down by about two degrees would have prevented the recent hurricane that they had in Florida. And the benefit for that is absolutely enormous compared with the cost. So you know, it’s 1000s of times cheaper to have these vessels cruising around and moderating hurricanes than to pay for all the damage.
Metta Spencer 59:22
Absolutely. Okay, I want to suggest that those of you especially Canadian Pugwash group if your people Pugwash, as you’re watching this, and you have thoughts or questions, go to our website as soon as I get this thing posted. I edit these shows and there’s hardly anything to do to this one to edit it. I’ll put it up tonight on the website — tosavetheworld.ca — and you can find it there. I think 509 is the number of the of the show. I’ve done 508 shows before this, and you can search for 509. And look at this, watch this video if you if you haven’t had a chance or if you want to see it again.
If you have questions or comments, there’s a comments column below. I suggest that you post your ideas, your comments there and we will get people answering because there’s a way you can reply. So, you can have a real conversation on that Comments column. Is there anything else quickly that needs to be said before I say goodbye?
Paul Beckwith 1:00:41
I would just like to say that shoreline erosion, if it is a good and large effect could be a very important way of promoting this.
Metta Spencer 1:00:54
Okay, thank you all. I think this is extremely helpful. And let’s hope that other people agree with us that it is a really worth exploring. At any rate, I think the Canadian Pugwash group would do well to look into this and make sure that we have not missed anything that is relevant to making decisions. Thank you all. Bye, bye.
Project save the world produces at least two of these shows each week. This one is number 509. You can watch them or listen to them as audio podcasts on our website to save the world.ca people share information there about six global issues. To find a particular talk show it or its title or episode number in the search bar, or the name of one of the guest speakers project say the world also produces a quarterly online publication piece magazine. You can subscribe for $20 Canadian per year. Just go to pressreader.com on your browser. And in the search bar. Enter the word peace. You’ll see buttons to click to subscribe
Head Office
- Box 248, Station P Toronto, Ontario, Canada M5S 2S7
- 1-416-789-2294
- project@peacemagazine.org
Ⓒ 2021 - All Rights Are Reserved
07. All states shall swiftly adopt maximally stringent efficiency standards for cars, trucks, ships, and aircraft.

Rapporteur: Liz Couture
Efficiency standards refer to the fuel efficiency standards as legislated by countries that produce fossil fuel burning vehicles. Of course the most stringent policy possible is 100% efficiency, or vehicles that emit zero emissions. This is not an easy policy to enact in law, as it takes time for transition. The longer term ideal goal, then, is to achieve zero emission vehicles over the next three decades, by 2050 by all the countries of the world.
It is easier and cheaper to redesign or convert some vehicles (and their associated infrastructure) than others, and so the maximum stringency level of efficiency possible will vary between manufacturing of cars, buses, trains, ships, and airplanes.
The urgency with which to get to maximum standards, indeed zero emissions, cannot be overstated.
For purposes of discussion, assume that the following current transportation vehicles for living, working, and playing are the most threatening to planetary health, not only because of the excess greenhouse gas emissions due to widespread use, but also because of increased anticipated demand:
- Commute – car, train, mass transit bus, small plane
- Business – car, train, truck, airplane, commercial cargo ships
- Pleasure – car, train, mobile home, airplane, passenger cruise ship
Given that many efficiencies have already been realized over the years in all of the above vehicles, and that more efficiencies are anticipated, assume that it is possible to convert all of the above technologies, replacing them with alternative energy, low carbon vehicles. Hence the “live, work, and play” future needs would thus be satisfied by the following low carbon and/or zero emissions replacements:
- Commute – e-car, e-train (regular or high speed), e-bus
- Business – e-car, e-train (regular or high speed), train, e-truck, streamlined ship
- Pleasure – e-car, bicycle, e-bicycle, (high speed) electric train, streamlined ship
A group of scientists have completed calculations for the book, DRAWDOWN: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming. The solutions are grouped by sector, and the transportation sector solutions include discussions and rankings for the following solutions: Mass Transit (buses), High-Speed Rail (e-trains), Transport Ships (commercial cargo), Electric Vehicles (e-cars and hybrids), Ride-sharing, Electric Bikes, Cars, Airplanes, Trucks, and Telepresence. Each solution has been extensively researched, based on existing reports, data, and successes from around the world.
Each solution is described in about two pages, and is summarized with three figures: 1) the number of gigatons of reduced carbon dioxide by 2050, 2) the net cost, and 3) the net savings, as well as a ranking. For example, Electric Vehicles has a ranking of #26 (out of 80-100 total solutions in the book), with an anticipated 10.8 gigatons of reduced CO2 by the year 2050; with an estimated $14.15 trillion net cost if scaled to the estimated 400 million sold by 2040 (a projection by Bloomberg); and with a total anticipated $9.73 trillion dollars of net savings.
The summary reads like this: “IMPACTS: In 2014, 305,000 EV’s (Electric vehicles) were sold. If EV usage rises to 16 per cent of total passenger miles by 2050, 10.8 gigatons of carbon dioxide from fuel combustion could be avoided. Our analysis accounts for emissions from electricity generation and higher emissions of producing EV’s compared to internal-combustion cars. We include slightly declining EV prices, expected due to declining battery costs.”(1)
To save the world, we need to be at the level of net zero emissions by 2050, so much more change is needed than merely increasing EV (Electric Vehicle) use to 16% of total passenger miles. The above description for electric cars does give hope, however, as do the efficiencies in the other industries, whether the vehicles are converted to electric or not. But note that it has been said that in order to transition to a low-carbon world, we need a mass mobilization effort like that during World War Two. The maximum stringency standards required for transportation vehicles to meet their emissions reduction targets, would in fact need to be zero. Dissent must be expected about this target, and understandably so, considering the massive economic overhaul that would have to take place in the auto and other vehicle industries as well as the oil industry.
Indeed, much else is needed — including shifts in global cooperation, mass consciousness toward ecological priorities, and financing.
Any country that produces vehicles needs access to the technology to redesign them for more fuel efficiency through the use of lighter materials, calibrated engines and parts, and combinations of fuel and electric hybrids. Otherwise, they should be completely redesigned to take advantage of low-cost electricity and battery storage technology that is now not only available, but at much lower cost than in years past. Maximally stringent efficiency standards are only as good as what is available anywhere in the world.There need to be ways of sharing technological knowledge and resources with any country attempting to reach their carbon emissions reduction targets.Ideally, every single country should be converting to electric vehicles. There are several opportunities to discuss this with global decision makers, including annual economic summits, and the Conference of the Parties (COP), where for example, world leaders met in Paris in 2015 and set targets for the next decades. Governments of countries of the world are attempting to meet these “Paris Targets” using legislation and carbon markets.
Countries can be encouraged to adopt the maximally stringent standards through carbon pricing legislation or regulation. Carbon pricing (whether by carbon taxation, cap and trade, or some other means, is supposed to send a clear message to the long-term markets that there is actually underway an economic transitioning to a low-carbon economy.
Stringency standards can also be imposed by government regulations, usually on a sector-by-sector basis. Carbon pricing and regulations are not in the purview of the policy plank being discussed here, but should be mentioned because of the urgency of the timeframe for change. According to the 2018 United Nations Intergovernmental Panel on Climate Change (UNIPCC) report, there are about 10-12 years left for the world to radically reduce global carbon emissions. Therefore, urgency dictates that carbon pricing, as well as regulation, be used to incentivize the markets to save costs on fuel for vehicles.Much additional information is available.(2)
At a national level, countries are not fully in agreement as to who should adopt which levels of stringency regulations.Most of them are willing to commit to lower targets than other countries, sometimes for political reasons. For example, at the COP 21 in Paris, India resisted agreeing to set targets to convert energy sources away from the cheap option of coal plants,arguing that, as a developing economy, they should have the same opportunity to use cheap, non-clean energy because developed countries did so, and it is only fair that their developing country have the same opportunity. After all, it is the developed countries that have emitted the excess carbon in the atmosphere.(3)
As previously mentioned, to save the world from the extensive carbon pollution from vehicles will require more radical measures. It is essential for emissions levels to fall to net zero. This requires industries immediately to begin changing all vehicles to clean energy technology — i.e. electricity made from non-coal, oil, or gas sources — and overhauling the transportation sectors of all global economies. It is necessary to include all vehicles, such as buses, trucks, and personal vehicles, but airplanes will be the big challenge, given the existing technology and the expected increase in tourist travel demand as the developing world’s economies improve.Every car plant and vehicle production method will need to be considered for either shut-down or shut-down and re-tooling. Such a task cannot be done even within the next decade, but plans must begin right away. However, since electric car plants already exist, the transportation sector has a good head start. About 70% of freight is moved by trucks, using 50 billion gallons of diesel per year — more than 25% of the fuel, and accounting for 6% of all emissions worldwide. In Drawdown, Transport Trucks are ranked at #40 out of 80-100 solutions, with respect to the opportunity to create fuel-saving technology. (Drawdown, pg 153). But fuel efficiency conversion costs are relatively low whereas fuel is costly, so fuel-saving yields a big financial return over the life of the truck.Thus fuel efficiency regulations and standards for the transport trucks are a worthwhile endeavour.Then, over time, plans can be made to completely overhaul trucks to electric motors.
SMART Solutions for the Transportation Sector
The fossil fuel-burning vehicles within the global transportation sector need to fully transition to non-gasoline, non-diesel, and non-jet-fuel sources such as electric energy , hydrogen cell, and/or biofuel in a SMART way.
The commonly used SMART acronym suggests that “To make sure your goals are clear and reachable, each one should be:
- Specific (simple, sensible, significant).
- Measurable (meaningful, motivating).
- Achievable (agreed, attainable).
- Relevant (reasonable, realistic and resourced, results-based).
- Time-bound (time-based, time limited, time/cost limited, timely, time-sensitive).”(4)
Here is what a SMART plan will entail for transportation:
Part of the Plan:
Specific: By 2050, all cars, buses, and trucks will have converted to net zero emissions. By 2030, the manufacturing plants closures or re-tooling conversions will occur.
Measurable: By 2050, no plants will be producing fossil fuel-burning vehicles. Furthermore, 100% of the materials recovered from the decommissioned trucks, buses, and cars will be recycled and used to create electric trucks, buses, cars, e-bikes, and e-personal vehicles (including vehicles for physically challenged). Priority will be given to create those vehicles that can solve the public transportation problem of “the last mile,” where people can easily get along the major arterial routes but not as easily through the rural roads or suburban streets. This applies to the Americas more than the developing countries, and consideration must be given to the emerging economies of Asia. The measurements may be based on the template of solutions from DRAWDOWN, with three parts: 1) gigatons of emissions prevented by replacing the old vehicles with new technology; 2) the cost to implement the changes to the plants, with the savings of using recycled materials; 3) the benefits in terms of actual dollars saved from switching to renewable energy and cutting the externalized costs.
Achievable: The countries of the world need to reach agreement at the next COP. The political will can come from people who use the vehicles: businesses with high transportation fuel costs, motorists who intend to continue driving cars, tourists with high carbon footprints but who want to travel without injuring the planet.For this, a campaign is required to reach selected economic players. This is achievable through legislation reflecting a global awakening as to the urgency of reducing carbon emissions by 45% by the year 2030.
The IPCC Press Release of October 8, 2018 notes that the transportation sector must radically change. It states that “The report finds that limiting global warming to 1.5°C would require ‘rapid and far-reaching’ transitions in land, energy, industry, buildings, transport, and cities. Global net human-caused emissions of carbon dioxide (CO2) would need to fall by about 45 percent from 2010 levels by 2030, reaching ‘net zero’ around 2050. This means that any remaining emissions would need to be balanced by removing CO2 from the air.”(5) Such calculations are beyond the scope of this article, but the numbers are presumably available elsewhere. Information for businesses, citizens, and government can be found in the book, The Price of Carbon by David Maenz(6), and the supporting documents and reports for the book, DRAWDOWN by Paul Hawken(7) et al.
Relevant: the fossil fuel-burning vehicles around the world have made life more convenient for all of humanity, but the inconvenient truth is that all of humanity is harmed by the greenhouse gas they emit. Therefore, a mobilization like wartime is needed to transform the plants that build vehicles, as well as those that produce their fuel. Airplane fuel will likely require more biofuels than the electric battery and hydrogen cell technology, but otherwise the technology is already available, and so the decision-making by the world leaders can begin immediately.
Timing: the timeframes being discussed in global summit meetings and books by prominent scientists propose the years 2030 for major targets and 2050 as net zero targets. The Conference of the Parties (COP) 2015 agreed to dates that were based on scientific models.(8) The UNIPCC report as of 2018 gave an even stronger warning, stating that there are 10-12 years left to make radical emissions reductions. This brings us closer to the year 2030, when overhauls must be completed.
Footnotes for this article can be seen at the Footnotes 2 page on this website (link will open in a new page).
08. The International Code Council shall adopt stringent performance-based building codes.
Buildings emit vast amounts of greenhouse gas and, worldwide, they account for nearly 40 percent of all energy consumption. In the U.S. in 2006, buildings used more energy than the entire country’s transportation sector.(1) Clearly, the world needs more stringent rules about selecting building materials, and perhaps the best way of accomplishing that is by tightening up the building codes that all governments adopt.
Building codes were invented to protect consumers from fire and structural failures, but gradually began to cover other public health and safety issues as well. For example, in the 1920s there were many deaths from typhoid epidemics because water was being contaminated, so strict plumbing standards were added to the codes. Then in the 1970s, energy conservation was added to the list of requirements after the oil scarcity crisis.(2)
The International Code council is a U.S.-based organization that sets building and energy standards for home and commercial buildings. It is also the code that some other provincial governments or local jurisdictions elsewhere adopt, rather than developing their own standards. However, there are many other such codes in use around the world, such as in Canada the National Energy Code for Buildings (NECD). This discussion will apply to them all.
Read moreIn addition to building codes that are legally required and enforced by inspectors, there are a few new sets of standards that are entirely voluntary, mainly to promote “green buildings.” Those standards are generally higher than the mandatory codes maintained by governments, though they often are invoked to improve usual practices. One such voluntary code is that developed by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) (3), but probably the best-known code is LEED, which is run by the US Green Building Council.
LEED stands for “Leadership in Energy and Environmental Design,” and it regularly updates its checklists of standards for architects and engineers working at the planning stage, before construction begins. Professional designers can apply (and pay a hefty fee) to have their plans ranked according to four levels of excellence: certified, silver, gold, and platinum. The idea is to produce buildings that “maximize occupant health and productivity, use fewer resources, reduce waste and negative environmental impacts, and decrease life cycle costs.”(4) The most important goal of such “green” design is to reduce the use of energy in each planned building and thereby reduce the emission of greenhouse gases. Buildings that are certified as green often sell for a premium price and garner praise for their architects.
But it is no simple matter to construct greener buildings around the world, and actual progress has been disappointing, as The Economist pointed out in a January 2019 issue. Its article is bluntly titled, “Efforts to Make Buildings Greener Are Not Working.”(5)
This shortfall even applies to the zealously committed LEED people. Their buildings are certified early – during the planning stage- and are not inspected after the construction is complete. If someone does check on the outcome later, she may see a wide disparity between the high original intentions and any real reductions in greenhouse gas emissions or the use of energy. Along the way, less expensive materials are often substituted for the ones originally specified. By now it has become evident that standards need to be tightened up globally and somehow enforced.
Sometimes the architects and engineers are themselves to blame for this discrepancy. For example, the LEED appraisal process assigns points to a proposed new building if it will reduce the use of electricity. However, the LEED accounting scheme does not include the electricity that will be drawn from wall plugs. Hence, in order to make her plan look good, an architect may plan for fewer built-in lighting fixtures and expect that lamps will be used instead. Of course, this means that there will be no real savings in the end, even if the building had been given high points for “greenness.”
But when a government enacts a building code, there will be real inspections and enforcement mechanisms, and so there is an increasing demand for tighter environmental standards to be legislatively adopted and legally enforced.
But, for two reasons, this has not helped matters much so far. First, building codes only are relevant to new buildings or to old buildings being renovated. Only about one percent of all buildings are replaced each year, so few houses and commercial buildings will be required to improve. This is no way to make quick progress worldwide.
Second, enacting legislation for tough new regulations is a political issue, and it will almost always encounter opposition. This is inevitable, since there will usually be start-up costs involved in the change, even if everyone can expect to benefit financially in the end from it. Carbon taxation is a case in point.
https://tosavetheworld.ca/wp-content/uploads/2019/07/ej-yao-D46mXLsQRJw-unsplash.jpg
The best way to reduce the consumption of energy is not to change the building codes but simply to tax heavily the carbon in fuel. Unfortunately, the consumer can see the higher price every time she refills her heating oil tank or pays her gas bill. Even when governments promise to refund all the carbon tax money to households or spend it on greater services for the working class, such legislation will be opposed and maybe defeated. Voters seem more amenable to toughening up the building code and adding the extra costs onto the selling price of the building. But again, that only applies to new buildings and to old ones being refurbished.
And there is another explanation for the slow progress toward greening the world’s buildings: Banks normally only pay to upgrade one thing at a time, such as installing insulation. But it would be better to retrofit a whole house at once, including by adding digital thermostats to lower the use of energy.(6)
Thus, it seems that progress has been too slow, so building codes and other basic principles have to be pushed harder. But what are the most promising changes to promote? Let’s consider, first, some basic principles and then some of the choices of building materials that matter.
Density Versus Affluence?
Let’s celebrate two of the greatest events going on in the world today: urbanization and the end of poverty. The interesting thing is that they are both connected to the climate crisis, but not in the way we’d prefer.
The world is urbanizing. By the year 2050 it is expected that there will be 9 billion people on this planet and that 70 percent of them will live in densely concentrated urban areas.(7) Moreover, today less them 10 percent of the world population lives in poverty, whereas in 1990 the corresponding figure was about 37 percent. Two centuries ago almost everyone in the world lived in extreme poverty.(8) We are ending poverty.
How does this happen? Poor people are gravitating to towns and cities, where they take advantage of the greater economic opportunities and soon improve their standards of living. A World Bank report shows that “poverty in rural areas is markedly higher than in urban areas, even though the urban poor have a higher cost of living.”(9)
Hurray for urbanization? Well, yes and no. Yes, for its effect on poverty, but no when it comes to the overcoming the climate crisis. Poor people everywhere emit less greenhouse gas than rich people, but when poor rural people migrate to the cities and become more affluent, they also join the rest of us in putting more carbon into the atmosphere.(10)
Overall, cities seem to worsen climate change. According to UN Habitat, cities consume 78 per cent of the world’s energy and produce more than 60 per cent of greenhouse gas emissions. Yet, they account for less than 2 per cent of the Earth’s surface.(11) Indeed, the trend is growing. By 2030, urban areas are expected to account for 76 percent of energy-related global greenhouse gases.(12)
Logically, this contradicts another well-established fact: that density is a major solution for the problems of global warming. Indeed, on a per capita basis, urban residents generate considerably less carbon emissions than rural people in the same country. There are many advantages to living close together.
How so? Cities concentrate people and economic activities. This makes possible economies of scale and greater efficiencies in energy use. Because they live near businesses, city dwellers are more likely to walk, ride their bikes, or take buses and subways rather than drive their cars and emit carbon from the tailpipes. Gasoline use per capita declines with urban density, and it is cheaper and more efficient to heat and provide electricity to high-rise apartments than separate houses.
Indeed, urban density should be a top priority for anyone planning sustainable construction. That is why realtors say that the top three priorities for buildings are “location, location, and location.” Dense locations are best. As the writer David Owen pointed out when criticizing Gap, Inc for building a marvelous new building in San Bruno, California. It was beautifully designed with all kinds of environmentally friendly features, but it was 15 miles from the company’s headquarters in San Francisco, and 15 miles from its other plant in Mission Bay. The location forced Gap employees to drive long distances, so the company added shuttle buses. But as Owen points out, “no bus is as green as an elevator.”(13)
So, if urban density tends to reduce carbon emissions, why do cities account for too much greenhouse gas? When you compare rural and urban people of the same income level, you’ll find that city-dwellers almost always use less energy and emit less greenhouse gas than rural people. But rural and urban people don’t actually have the same income levels. City dwelling typically makes people richer, and rich people tend to produce too much greenhouse gas, no matter where they live.
Research seems to confirm this explanation. Not all urban districts emit equal amounts of greenhouse gas. The suburbs, with their monster-size houses, vast lawns, and three-car garages are the worst offenders. And even neighborhoods of modest single-family houses are far worse than clusters of high-rise apartment buildings. The least amount of carbon is emitted in crowded areas, including high-rise slums.
The same factors partly explain why cities vary so much in their impact on the climate. For example, Denver residents emit twice as much CO2 as New Yorkers, mainly because of New York’s greater density and lesser need to commute by car.(14) Cities that include large industrial areas or airports account for more carbon emissions than cities where a large proportion of the inhabitants work in “knowledge” jobs.
Still, neither density nor affluence explains all of the variation between cities’ emission levels. A more adequate explanation takes account of the differences between emissions caused by production and those caused by consumption . Many of the activities that produce and emit carbon can be located far outside of towns, whereas it is cities that consume their products. Take electricity, for example. Hydroelectric dams, coal-fired plants, and nuclear power plants are located in rural areas, but most consumption of electric power occurs in urban areas. Likewise, farms produce much of the carbon and nitrous oxide in the air, but they do so to produce food for city-dwellers to eat.(15) And some cities are primarily consumers of CO2-generating products, whereas industrial cities are mainly the producers.
There is a wise old saying that people should be responsible for cleaning up their own messes instead of putting the burden onto others as “externalities.” However, if we want to assign responsibility (or blame) for greenhouse gas emissions, who should have to clean up the mess – the (often rural) producers or the (often urban) consumers? Actually, like it or not, we all do. It’s our mess now.
Fortunately, there are some general principles that, if observed, can make cities greener. These are not necessarily covered by building codes but can be part of a city’s overall plan. One simple principle is just to build spaces no larger than necessary. If we want density, we cannot have “urban sprawl,” or even gigantic houses that use immense amounts of energy. Zoning regulations can help to limit the size of housing units. Besides, mansions are passé. Buy a condo downtown instead and have more fun.
Second, we can strategize ways of cooling urban “heat islands” – the areas in a city where hot buildings and pavements have replaced cool, permeable soil and vegetation. A city of one million people can be 1-3°C warmer than its surroundings(16) and on a clear, calm night, the temperature difference can be as much as 12°C.(17) We need to plant far more trees, shrubs, and rooftop gardens to counteract such heat islands.
Much of the heat island differential can be attributed to the “albedo effect” – the reflection of light (and therefore heat) back into space from white or pale-colored surfaces, and the absorption of light (and therefore heat) by dark surfaces. This fact gives us a solution: paint roofs white, or pave with pale beige concrete instead of black asphalt. There are some disadvantages to this, however: Concrete sidewalks and roads can be more slippery with ice in the winter than asphalt, and the pale pavement can reflect heat onto nearby buildings, whose inhabitants may have to use more air conditioning, which defeats your purpose.
Ordinary pavements also have another disadvantage when it comes to water-retention. Concrete and asphalt are hard, impermeable surfaces. When it rains, the water must run off into sewers and conduits, where it is wasted or sometimes overflows and becomes a flood.
Lately good solutions have been developed for this problem: permeable blocks of cement that can allow stormwater to seep through into the soil below, or at least can be set far enough apart to allow water to flow through the cracks and return to the groundwater.(18) This is not an adequate solution for roads that must support heavy traffic, for their structure must be strong, but it works well for many sidewalks and patios, cooling the environment somewhat and reducing the risk of floods.
Sustainable Building Materials
As noted above, the construction industry has not progressed far in reducing carbon pollution in their new buildings. This shortcoming has to be attributed largely to the fact that three of the main building materials – steel, concrete, and glass – are still large sources of carbon emissions. Though manufacturers are seeking solutions to these problems, none are very satisfactory yet.
To be sure, there are some novel ideas for materials to be used in buildings: These include straw bales; bamboo; recycled plastic or sawdust mixed into concrete; rammed earth; and ferrock, a mixture of recycled materials such as steel dust, which absorbs carbon dioxide when it dries, thus being actually a carbon-neutral substance instead of emitting CO2. But major improvements in materials are disappointingly slow to arrive. Iron and steel account for 24 percent of the building industry’s emissions and concrete accounts for 18 percent.
Steel
For at least 150 years the method of making steel has not changed much. Iron is put into large blast furnace with coke, a fuel made from coal, and this turns the iron ore into liquid metal, which is then refined into steel. Inevitably, carbon dioxide is in the output, though it is possible to reduce the quantity of it by using scrap metal and electric arc furnaces instead of raw iron ore and by omitting the coke. Unfortunately, there is not enough scrap metal for this to help much.(19) The Indian manufacturer Tata Steel Europe is working on a method of reducing both CO2 emissions and energy consumption by one-fifth, but that modest improvement is not likely to be used commercially until at least the 2030s. The delay is caused by the technical difficulties. The most promising possibility is to eliminate carbon emissions from the ironmaking stage by using hydrogen, though then there will be a problem obtaining the hydrogen. It can be produced by electrolysis, but in the end, such steel will cost more.(20)
At present, steel is widely considered essential for the structural frames of tall buildings, but it does present certain challenges for the engineers and architectural planners. Steel conducts heat very well, which is sometimes an advantage but often not. When high-rise apartment buildings are being retrofitted to reduce energy use, the balconies present a special problem. The steel beams that support the whole building generally protrude outward, supporting each balcony, and in doing so they transfer heat out and waste it. If these balconies are to become “green,” their support must somehow be detached from the steel beams, so they do not waste heat.(21)
Concrete
Concrete has a long and wonderful history. It was apparently used more than 8,000 years ago in Jordan, to create floors, buildings, and underground cisterns. The Pantheon in Rome remains to this day the largest unsupported concrete dome in the world. Roman concrete was based on a hydraulic-setting cement. It is stronger and more durable than our modern product because it contained volcanic ash, which prevents cracks from spreading.(22)
Concrete is still used everywhere. According to a BBC report, “production has increased more than thirtyfold since 1950 and almost fourfold since 1990. China used more concrete between 2011 and 2013 than the US did in the entire 20th Century,” and concrete production is expected to increase by a quarter by 2030.(23)
Unfortunately, concrete also contributes more CO2 to the climate crisis than aviation fuel. One ton of concrete production produces a ton of CO2 emissions, and with 5 to 7 percent of the world’s carbon emissions emanating from its production,(24) it presents us with a problem in urgent need of a solution.
Concrete is made of Portland cement, water, and aggregate (rock, sand, or gravel). The Portland cement itself is made from crushed limestone and aluminosilicate clay, which are heated together in a huge kiln at about 2,640 degrees Fahrenheit. The heat splits the limestone’s calcium carbonate in two – creating calcium oxide, the lime content, and carbon dioxide, the waste that is causing so much trouble to the world today. The product at the end of the cooking is called “clinker,” which is cooled, mixed with gypsum, and ground into powder-the cement. This process is called “decarbonizing limestone,” and it is the source of about 60 percent of the emissions. The remaining 40 percent comes from other processes using energy to manufacture the concrete.
To make concrete, the Portland cement is mixed with water to form a paste, which is then combined with aggregate. This mushy substance is placed into forms, where it dries and hardens into a rock.
Most concrete nowadays also contains fly ash, a fine powder that is a by-product of burning pulverized coal in electric generation power plants. When combined with lime, fly ash can be used as a substitute for some of the Portland cement, and in fact improves the quality of the final concrete. It is generally stronger than the type made only with Portland cement and, like the Romans’ volcanic ash, it reduces crack problems. Its main advantage is that, by replacing some of the Portland cement, the fly ash reduces CO2 emissions.(25)
Unfortunately, this is not a huge improvement, since the fly ash itself is a by-product of coal-fired power plants-which are themselves probably the worst sources of CO2, and top priority for environmentalists to close down. Moreover, because it is produced by burning coal, about 15 tons of carbon dioxide is emitted for each ton of fly ash produced. That means that the use of fly ash in concrete can offset only five percent of those emissions.(26) That is better than nothing, so long as coal is being used anyway, but the goal must be to replace quickly both coal use and Portland cement with the better materials.
And there has been progress toward that goal recently. The most promising substitute for the current method of producing cement is a type of “slag cement,” developed by Drexel University engineers. It is activated by alkali – an industrial by-product called slag-plus limestone, and its production does not require heating. The ingredients are abundant and cheap, so the new Drexel cement costs about 40 percent less than Portland cement and reduces energy consumption and carbon dioxide production by 97 percent. It is apparently as strong as Portland cement.(27)
Glass
The manufacture of glass is a simple process. It involves heating ordinary sand (which is mostly silicon dioxide) at about 1700 degrees C until it melts and turns into a liquid. A certain amount of carbon dioxide is released in the process, and more CO2 is also generated by creating the electricity used for heating the silicon. We need to reduce those sources of carbon emission, which can be achieved to some degree by increasing the proportion of recycled glass used in place of raw materials. However, this improvement is limited by the availability of recyclable glass of acceptable quality.(28)
Still, the problem that building designers face with glass it not so much the production of waste CO2 during production as its poor performance as insulation against the transfer of heat. A major source of heat loss from a building is through its windows. The best available solution is double glazing of the windows – or even triple glazing. Two or three panels of glass are put into a frame, separated by a vacuum or gas-filled space to reduce the transfer of heat. Still, although floor-to-ceiling windows are attractive to buyers of new modern homes and condos, architects who aim for sustainability are far less enthusiastic about them, since windows pose, at best, a major challenge for the conservation of energy.
Most new office towers are covered with glass and they too present problems for the architect. However, those buildings have an advantage over private homes and condos: The glass sheath covering the exterior of the building is usually a “curtain wall,” which is non-structural. It is separate from the interior part of the building, being hung outside of the concrete slab, using anchors. Curtain walls are self-supporting and give a building’s exterior the look of top-to-bottom glass, admitting light. Condos are built with a “window wall” that is sandwiched between the concrete floor slabs, allowing the uninsulated floor slabs to thermally-bridge to the exterior. Because they consist of a single unit, curtain walls are superior to the window walls of most condo residences in their resistance to moisture, wind, earthquakes, and the transfer of heat.(29)
Wood
At last we come to a building material that everyone can love: wood. Many current green building projects -both new construction and renovations – are using wood. Trees grow naturally, using energy from the sun, and wood is sustainable, renewable, and recyclable. While wood is growing in the wood factory, or forest, trees draw down carbon from the atmosphere through photosynthesis, and emit oxygen – not a bad form of ‘pollution’.
Wood is an effective insulator that requires far less energy to produce than concrete or steel. So long as wood is in use for buildings and furniture, it is keeping the CO2 locked up that it originally captured from the air. If the wood is burned or allowed to rot in the forest, that carbon will return to the atmosphere. So, use wood for buildings!
Smaller pieces of wood can be laminated together to make thick prefabricated slabs-that can be cut into columns, beams, and panels-called “mass timber,” to replace much of the steel or concrete in the structures of high-rise buildings. For example, there is an 1 8-storey mass timber hybrid student residence building at the University of British Columbia.(30) Many more towers are being planned, though the public still has to be convinced that they are safe.
In a video conversation Paul Dowsett and Michael Yorke argued in favor of using wood as structural members for large buildings.(31) They addressed first the question of fire, which is the objection that initially occurs to most people. Wood is, of course, famously flammable. However, when a thick slab of wood is in a fire, the exterior half inch will char, but the interior part will retain its structural integrity, protected by the created layer of char. It compares favorably with steel in allowing the inhabitants of a tall building enough time to escape.
Finally, there is a concern about cutting down trees at the very time when forests are most needed as carbon sinks. We need lots of trees absorbing carbon from the atmosphere and storing it in their trunks, roots, and leaves. Indeed, the most feasible means of reducing global warming probably is to plant about a trillion fast-growing trees in suitable locations and to nurture them to maturity. Cutting timber would seem to be a gross threat to the best method of preserving our planet.
Yes, but that notion should be qualified. Trees are at their most active phase of sequestering carbon while they are young and growing fast. Many trees slow down their carbon intake when they reach maturity, though they do still serve as reservoirs, containing it until they finally fall over and rot, releasing the carbon back into the atmosphere.
Harvested at the right time, trees can be used for building materials, and immediately replaced in the forest by other fast-growing saplings. This practice, if done properly, can be sustainable – more beneficial to solving the climate crisis than by relying on any of the other main building materials that we have discussed. You can expect to see many new sustainable buildings constructed of wood over the next few years. Now let’s celebrate!
Footnotes for this article can be seen at the Footnotes 2 page on this website (link will open in a new page).
10. All states shall accelerate R&D of HVDC electric grids, energy storage, and Demand System Management

Rapporteur: Michel Duguay
In North America, as well as in Europe, the price of electricity from wind turbines and from photovoltaic panels is now low enough to compete with electricity produced by conventional power plants based on burning coal or natural gas. At least two problems, however, must be tackled in order to make renewable power large enough to alleviate the climate change issue. The first one is storage. The wind does not always blow with enough strength and the electrical output of solar panels fluctuates with cloud coverage. The second problem is the need to transmit electric power from power-rich regions to power-poor ones while at the same time maintaining grid power reliability and frequency stability.
The renewable power fluctuation problem is being alleviated by the recent development of high capacity batteries for electric cars and for buildings. The idea is that cars are parked during a good part of the day and that we could keep them connected to the electric power grid while parked. When the power grid has excess electricity it could store it in the electric car and building batteries. When the power grid faces a very high demand for electric power it could go and fetch electrical energy stored in the building and car batteries. Computers would be used to smoothly manage this exchange of electric power.
Read moreThe second problem has to do with the transmission of AC (alternating current) electric power. North America has five power grids which can only exchange electric power if the precise near-60-Hertz AC frequency is maintained independently in each one of the power grids. The five power grids are:
- the Western United States, British Columbia and Alberta;
- Eastern US, central Canada and the maritime provinces;
- Québec province;
- Texas; and
- Alaska.
AC electric power can be smoothly exchanged between these regions if it is first converted to DC (direct current), transmitted over high voltage DC transmission lines (up to one million volts) and then reconverted to AC at a frequency that is synchronous with that of the receiving region. Another way for different regions to exchange electric power is by means of variable frequency transformers.
One additional technique to maintain power grid reliability and frequency stability is by introducing so-called demand side management. The idea is for the power company to control devices like hot water heaters and cold water refrigeration used for air-conditioning in large buildings. Domestic hot water need not be produced during peak demand hours. The same applies to cold water refrigeration used for air conditioning. Thanks to computers and Internet communications the power grid could turn these devices on or off depending on electric power availability.
Another important aspect of electric power grids is legislation governing the transmission and distribution of electric power from utilities to customers. In the US the Energy Policy Act of 1992 was passed and it required owners of high power transmission lines to permit access to electric power generation firms. The Energy Policy Act of 2005 introduced measures to encourage the production of renewable electric power.
Europe has become a world leader in terms of wind and solar power deployment. A broadly recognized goal is to achieve 100% renewable power generation in the present century. One theme being debated is distributed versus centralized electric power distribution. The EUROSOLAR organization is promoting decentralized generation and ownership whereas the DESERTEC organization envisions a highly centralized system of imports and exports of solar and wind energy throughout Europe. There is also a proposal to combine the two ideas in a smart Supergrid. The idea of increased investments in renewable energy R&D has broad support in Europe. See https://www.sciencedirect.com/science/article/pii/S0960148119302319
09. All states shall adopt norms and procedures for the production, recovery, and recycling of materials

Rapporteur: Liz Couture
Industrial companies around the world are not using the most efficient product design procedures, nor the most eco-friendly materials, nor the best “cradle to cradle” recycling opportunities possible and available. Every bit of wasted material translates to excess energy that was used to produce it, which in turn translates to excess carbon emissions if the energy source did not come from renewables.
The solutions to carbon emissions reductions in producing a product should be applied at any point in the life cycle of the product. Organizations such as Rocky Mountain Institute(1) and books like Natural Capitalism(2) have been working on them for decades. In the book DRAWDOWN: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming(3) the most promising solutions are researched and documented. Each solution states how many tons of carbon dioxide emissions will be avoided cumulatively until the year 2050, how much the implementation of the solution would cost, and how much the net savings or benefit would be to the world. Then, all the solutions are ranked considering several criteria, including the ease with which the solution can be implemented, the lesser of the estimated costs to scale it up, or perhaps the greater the savings and benefits achieved—but always with the most important consideration, which is the amount of carbon emissions reduced if the solution is implemented.
Read moreThe Materials section describes seven categories of solutions:
- household recycling,
- industrial recycling,
- alternative cement,
- refrigeration,
- Recycled Paper,
- Bioplastic,
- Water Saving–Home.
As the summary of the Materials section of Drawdown eloquently puts it: “society is at the very beginning of redesigning and re-imagining the materials used in products and structures, as well as the means by which they can be reduced, reused, and recycled.” And, “Industry has come a long way….with responsible companies now paying close attention to where they source their materials and what happens to them after the useful life of their products.” And Drawdown notes that the number one ranked solution involves the coolants used in refrigeration.
In Drawdown, the experts have set realistic goals that are measurable and monetarily quantifiable. For example, if half of the recycled materials come from households and if the average worldwide recycling rate were to increase to 65 percent of total recyclable waste, then 2.8 gigatons of carbon dioxide emissions could be avoided by 2050 just with household recycling alone. Although the next cost given is $366.9 billion, the net savings would be $71.1 billion, a long-term win-win solution.
In order to recycle household materials, the norms and procedures adopted by the state would vary by country, by culture, and certainly by educational level and economic considerations. The early mantra of Canadian environmental group “Pollution Probe”, was “Reduce, Reuse, Recycle”— the “3 R’s.”
One example of reduce is the engineering design of a product that is able to use less of the material in the first place. If less mining and transport are required to produce the same product, then reductions in energy and hence carbon emissions will be realized. The education of engineers that produce these cost-saving, eco-friendly products needs to emphasize principles of durability long before they reach the drawing table. Furthermore, if companies were to take back their products and use them as new feedstock for future products, then less material would need to be consumed and further production costs would be realized.
For households and businesses to practice reusing products, there must be a collective consciousness change away from consumerism. People have been always encouraged to buy in order to support the economy, so this a difficult societal change to make, because behavioral changes meet resistance. Local governments, regional governments, and national governments all need to enact strict legislation that penalize unnecessary waste and incentivize companies to enact take-back programs. It is challenging for any government to enforce legislation that covers so many areas of industry.
However, if the culture of the corporations can embrace the 3R’s, then it may be more successful. For example, Interface Carpets decided to ask: “How could making carpets address inequality in the world?” This changed the culture of the company. Interface worked with coastal communities in the developing world and recovered 640,000 tons of abandoned fishing gear, including fishing nets. They converted the nylon nets from waste into recycled carpet yarn; today communities in developing nations have income from their carpet tile making labor.
Culture will transition from non-sustainable methods to “closed loop cycle” methods eventually, but government laws can certainly make it happen more quickly.
Recycling comes in many forms in communities and corporations. From blue boxes and special “environmental centres” to landfills and incineration plants, there are efforts to deal with humanity’s global waste. If efforts to reduce materials reach their limits when much of the product has been recovered and reused (or repaired or repurposed), then the last resort for all the metal, glass, paper, and plastic left over would be recycling.
In developed countries, the recycling may be through the use of blue boxes, and in less developed countries, the recycling may be accomplished through the use of manual pickers who sort through the discards. Whatever the methods, a well-connected network that identifies “who has what / who needs what” would be an excellent source of efficiency. Every local government needs to pass legislation that addresses the problem of local sustainable management of materials. Failing that, because some municipal councils may need nudging, then the next highest government above the local jurisdiction is responsible for enacting the enforceable legislation.
Again, the transition must involve public education, if it is to be supported by the people as the “right thing to do.” Fortunately, the myriad of books, blogs, and trail-blazing ideas already in existence makes such education readily available.
Drawdown states that given that about “50 percent of recyclable materials come from industrial and commercial sectors. At a 65 percent recycling rate, the commercial and industrial sectors can avoid 2.8 gigatons of carbon dioxide by 2050.” The net operational savings would be $142 billion over thirty years, so not only are emissions reduced, but financial advantages are realized as well.
Although every person and every company can realize energy, materials, and emissions savings by small and larger solutions, there are some solutions that, because of the intensity of energy required in their production — for example, the cement industry — would benefit greatly with production changes. The facts about this highly energy intensive industry are well documented.
Footnotes for this article can be seen at the Footnotes 2 page on this website (link will open in a new page).
12. All states shall negotiate to preserve and protect forests and enhance carbon sinks

Rapporteur: Metta Spencer
Carbon Sinks
A carbon sink is a reservoir that stores carbon, keeping it sequestered instead of circulating in the atmosphere as a greenhouse gas. Plants, the ocean, and soil are the main carbon sinks in nature. Plants absorb carbon dioxide from the air for use in photosynthesis, leaving some of this carbon in the soil when they die and decompose. The oceans also store much of the planet’s carbon dioxide.
All of these sinks are being ruined by human activities today, and heroic measures are required to protect them and use them even more extensively to sequester carbon and prevent runaway global warming. Here we will examine these natural carbon sinks as well as some technological inventions that are being proposed for use in capturing and storing or recycling carbon.
Negotiations
Some nations occupy land with large carbon sinks such as rainforests. And some nations — especially the industrially advanced ones — emit disproportionate amounts of greenhouse gases to the atmosphere. We are all being challenged now to reduce such emissions, mainly by using less fossil fuel. People living in rich countries find this especially hard to do, for we are accustomed to the use of abundant energy. At the same time, we are asking people in the less developed countries not to adopt the same greenhouse gas-emitting technologies that had made us rich. This is unfair, but it is also essential. Every country must cut back, including both those that caused most of the global warming problem itself and those blameless ones that will be forced unjustly to sacrifice. But naturally, not all countries seem willing to accept the necessary deprivations.
Read moreCOP is an acronym standing for “Conference of the Parties (COP) to the United Nations Framework Convention on Climate Change.” COP 21 was held in Paris in 2015 and successfully yielded “the Paris Agreement,” which has been signed or ratified by all 197 countries, with each one promising to curtail global warming in its own way. However, President Trump has since declared that the United States will withdraw from it. Sharp bargaining among other states continues at every annual COP meeting.
The most serious demands are proposed by such countries as Brazil. Most people know that the survival of humankind may depend on the preservation of the Amazonian jungle. Nevertheless, that rainforest is rapidly being replaced by cattle ranches or flooded by dams. When COP 24 met in Poland in December 2018, Brazil’s newly elected President Jair Bolsonaro declared that his country would not preserve its rainforest, as previously agreed.
Brazil is not unique in reneging on its promises. A number of other less developed countries now insist on being compensated for their own sacrifices. It is not clear what kinds of deals can be struck, but the way forward does seem to require more negotiations — new quid pro quo arrangements to pay countries for preserving the carbon sinks. This plank of the Platform for Survival recommends that such negotiations be undertaken without further delay.
Costs and Benefits
To negotiate contractual agreements to preserve a carbon sink would seem to require all negotiating parties to fully recognize the sink’s value, though in fact this is often difficult to assess. Parties often dicker over a price without knowing either the true costs or the potential benefits of maintaining the sink. In the final analysis, sinks have infinite value, for they are essential for the survival of the human species. Even in the shorter term, most investments in reducing global warming are financially profitable. For example, although there may be up-front costs in protecting a forest or waterway or adopting a new technology that uses renewable energy, the benefits usually are worth far more and repay the investment rather quickly.
One illustration of this point comes from Project Drawdown, which has demonstrated the financial advantages of investing in about 100 climate-saving measures. They asked: How much would it cost to reverse global warming? The first cost that they calculated is the total price of implementing all 100 solutions: $129 trillion over thirty years, or about $440 per person per year. However, a more illuminating number is the net cost– how much more money would be required to implement climate solutions, beyond the cost of continuing to do business as usual. For example, they compared the costs of a solar farm to that of a coal-fired plant. And they compared the costs of an electric transport system to one fueled by oil. That net cost of all 100 solutions is $27 trillion over thirty years — i.e. lower than the first cost, thus offering remarkable savings. They also calculated the net operating costs or savings, and found that over thirty years, there would be net operating savings of $74 trillion. (1) If the public realized this advantage, a stronger commitment would surely exist to reduce climate change.
A solution to one of the global problems is often also a solution to one or more others. For example, we want to keep the maximum amount of carbon in the soil for the sake of preventing global warming. However, if instead we are primarily concerned with increasing the food supply of the planet and maintaining soil fertility for future generations, we will also promote carbon sequestration in the soil. Indeed, there is no need to discuss the protection of soil carbon sinks in detail here, for an excellent explanation already has been provided in the article about Plank 14: “All states shall support improvements of soil health for resilient food production and carbon sequestration.” Sequestering carbon in soil both reduces global warming and improves food production.
Soil as a Carbon Sink
Agriculture. Farming is the main factor that determines whether the soil will be a carbon sink or a carbon source. At present, most farms are major carbon sources, not sinks, because farm animals emit carbon and farmlands are tilled, releasing more carbon to the atmosphere than the plants manage to sequester with their roots.
The earth beneath our feet contains an estimated three times as much carbon as that found in the atmosphere and four times the amount stored in all living plants and animals.(2) It can hold even more – and indeed actually did so before farming began about 12,000 years ago. One 2017 report estimated 133 billion tonnes of carbon had been lost, noting:
“Human population and economic growth has led to an exponential rise in use of soil resources.
“The consequences of human domination of soil resources are far ranging: accelerated erosion, desertification, salinization, acidification, compaction, biodiversity loss, nutrient depletion, and loss of soil organic matter.
“Of these soil threats, loss of soil organic matter has received the most attention, due to the critical role [it] plays in the contemporary carbon cycle and as a key component of sustaining food production.”(3)
Renee Cho adds,
“Currently, soils remove about 25 percent of the world’s fossil fuel emissions each year. Most soil carbon is stored as permafrost and peat in Arctic areas, and in moist regions like the boreal ecosystems of Northern Eurasia and North America. Soils in hot or dry areas store less carbon.
“How much carbon soils can absorb and how long they can store it varies by location and is effectively determined by how the land is managed. Because almost half the land that can support plant life on Earth has been converted to croplands, pastures and rangelands, soils have actually lost 50 to 70 percent of the carbon they once held. This has contributed about a quarter of all the manmade global greenhouse gas emissions that are warming the planet.
“Agricultural practices that disturb the soil—such as tilling, planting mono-crops, removing crop residue, excessive use of fertilizers and pesticides and over-grazing—expose the carbon in the soil to oxygen, allowing it to burn off into the atmosphere. Deforestation, thawing permafrost, and the draining of peatlands also cause soils to release carbon.”(4)
Though in most parts of the world farming has been depleting the soil and the nutrients in the food that is grown there, this trend can be reversed. At the COP21 meeting, France introduced an initiative called “4 per 1000.” This refers to the objective — to increase the carbon content of farmland everywhere by .4 percent per year.(5)
Many methods are available for this, with the advocates calling their respective approaches, inter alia, “regenerative agriculture,” “organic farming,” and “climate-smart agriculture.” The primary principles are that farmers should make sure the soil is covered with plants at all times by planting “cover crops” between rows or other exposed soil, to reduce erosion and return nutrients such as nitrogen to the soil. They should rotate the annual crops and avoid disturbing the soil by tillage—plowing. “No-till farming” is especially important for retaining carbon, since turning soil over to prepare it for planting exposes the buried carbon to oxygen where it can be taken up as CO2, blown away by the wind, or washed away by rains.
Soil Amendments. Agriculture can also increase the carbon content of soil by replacing much nitrogen-based fertilizer (which pollutes waterways and oceans and enters the atmosphere as a potent greenhouse gas, nitrous oxide) with biochar and (we hope eventually) commercially-grown special microbes that fix nitrogen in the soil, much as legumes do. These microbial soil amendments are not available yet,(6) but biochar has been used since ancient times, though only lately has it become recognized as a superb way of adding carbon to soils damaged by conventional farming methods.
Biochar is a form of charcoal, which is produced by burning organic material in the absence of oxygen. It is not a fertilizer but it improves the soil by adding carbon in a porous form that retains water and cannot be absorbed back into the atmosphere. Some ancient indigenous societies of the Amazon region, where the tropical soil is normally too infertile for permanent farming, regularly made charcoal from their household wastes and buried it. To this day, as a result, one can find areas of rich black soil six feet deep around the sites where they lived; this soil, called terra preta, has retained huge amounts of carbon for up to 7,000 years. Today it is possible to pyrolize biomass (agricultural and industrial wastes) as well as such wastes as garbage, sewage, sawdust, old cardboard boxes, turkey feathers and other refuse from abattoirs, in devices that also retain the oils and gases that are produced along with the biochar. These side-products can be used for clean fuel, with the biochar itself becoming a valuable soil amendment. In most types of soil, adding biochar improves the crop yields markedly, while of course also removing CO2 from the atmosphere and sequestering the carbon permanently.(7) Some enthusiasts of biochar favor enacting legislation that will require all commercial fertilizers to include a specific percentage of biochar.
Peatlands. Besides agriculture, the draining of peat bogs seriously threatens the Earth’s overall carbon sequestration. These bogs only cover about three percent of the world’s land surface, but they store at least twice as much carbon as all existing forests. At least one-third of the world’s organic soil carbon is in peatlands.(8) They were created when vegetation died, often 8,000 or more years ago, and was partially preserved in waterlogged terrain. The organic material was trapped and compressed in the absence of oxygen, preventing its decaying and release into the air as carbon dioxide. If left long enough, these peat bogs would become coal and store the carbon indefinitely.
Unfortunately, peat bogs have been considered wastelands, and indeed they are not an environment that human beings enjoy. The wet ground squishes underfoot and mosquitoes abound. People, including environmentalists, often feel that they are improving the land by draining it, especially since it is a source of methane, a potent greenhouse gas. However, draining these bogs allows the ancient organic matter to begin decaying and turning into carbon dioxide. Also, drained peatlands can catch fire, which becomes almost impossible to put out. In 2015 Indonesia’s vast drained bogs burned, releasing more than 800 million metric tonnes of CO2 and leading to the premature deaths of 100,000 people.
Peatlands can be partly restored by preventing further draining. The bogs must be kept wet or their carbon will be released and cannot be recovered. Carbon markets can help protect these carbon sinks by putting a price on their preservation. Farmers who are tempted to drain their peatlands and produce lucrative palm oil may instead be paid to protect them as precious carbon sinks.(9) Such deals should be negotiated as early as possible, before the damage is irreversible.
Deserts. Unlike peatlands, deserts are lands that sequester almost no carbon. Few plants grow there because of the lack of water, and without plants to carry carbon to their roots, no carbon can be sequestered underground. Desertification has been increasing in many areas of the world because of climate change and unsustainable land-management practices. However, it is possible to reverse that trend if supplies of water can be obtained. Approximately 32 million square kilometres of desert land can, at least according to some proposals, be made fertile again, include parts of the Sahara.
Marginal deserts can sometimes be restored by improving agricultural methods, such as permaculture and planting trees. Some innovators propose to capture and manage floodwaters or divert seawater inland and grow plants that thrive in salty soil. Other proposals involve using solar power to distill water; reusing waste water; or obtaining water by cloudseeding. In Qatar, sea water is being purified with the aid of solar powered electricity. Tree seedlings are grown in a greenhouse with the help of the desalinated water, then planted and watered in the desert. In Egypt, treated sewage is being used for irrigation. In China, the shifting sand dunes of the Kubuqi Desert, an area of 18,600 sq km, are being held in place by special plants that grip them and keep them from encroaching on farmed land.(10)
Oceans as a Carbon Sink
By weight, the oceans are about 500 times the size of our atmosphere.(11) They constitute the largest carbon sink on the planet, absorbing more than a quarter if the carbon dioxide that humans put into the air.(12) It is chiefly absorbed into the oceans in a process called the “solubility pump.”
There is also a second mechanism, the “biological pump,” which sequesters the carbon of biological organisms to the deep layers of the ocean and the seabed sediments. These organisms include phytoplankton, which contain carbon captured by photosynthesis, and mollusk shells, which contain calcium carbonate.
The biological pump also includes the transfer of carbon from the air by rain, over land, through waterways into the ocean. When raindrops fall through air they absorbs some CO2, forming weak carbonic acid. When such rain falls on rocks such as limestone, it causes them to “weather” over long periods of time. Water freezes in the cracks and porous parts, expanding and forcing the rocks to crumble into smaller bits — the soil that we walk on. The carbonic acid combines with calcium and forms calcium carbonate or calcium bicarbonate, which is swept away through streams and rivers to the ocean, where it eventually settles to the bottom, sequestering the carbon in the world’s largest carbon sink.(13) It takes millions of years for this process to change landscapes, but on a regular year-by-year basis, it accounts for a small but significant portion of the planet’s carbon cycle.
Acidification. The solubility pump is the main factor impairing the oceans as carbon sinks. As the air contacts the surface of the ocean, the CO2 in the atmosphere reacts with the water, forming carbonic acid, which gradually makes the whole ocean more acidic. No realistic technological method exists at present for changing the acidity of the ocean except to reduce the amount of carbon in the air. Ocean acidification is already killing coral reefs and certain mollusks, and the trend seems to be increasing instead of declining. According to a National Research Defence Council report,
“Since the start of the Industrial Revolution about 150 years ago, approximately one-quarter to one-third of all CO2 from fossil fuels-—or 500 billion tons—-has been absorbed by the seas, increasing the average acidity by 30 percent. That’s the equivalent in weight of 500 billion Volkswagen Beetles dumped at sea.”(14)
Variability of absorption. Although the oceans are, overall, still a carbon sink, their absorption of carbon varies from one region to another and from one time to another; some areas may currently be carbon sources instead of sinks. The Southern Ocean has reportedly varied in its absorption of carbon because of changing wind speeds in the area, which affect the extent to which deep water is brought to the surface.(15)
During some geologic periods, the oceans are sinks and at other times they are sources of carbon. During ice ages the amount of carbon decreases and the oceans are sinks, absorbing it, whereas between ice ages, the oceans are again net sources, releasing larger amounts of CO2.
Although the upper layers of the ocean both receive and emit carbon, the bottom of the ocean seems to be a more permanent sink. There are now numerous studies underway, exploring the possibility of forcing anthropogenic carbon dioxide down into the deep sea sediments as a long term method of sequestration. The high pressures and low temperature at that depth keep the CO2 from rising.(16) Any excess carbon sent to the bottom of the ocean would join approximately 6.4 trillion tonnes of methane, which is already trapped there in the form of clathrates — frozen crystals of gas and water— which we hope will remain there, far away from the atmosphere.
In the 1990s, the ocean’s uptake of CO2 declined but again it increased in the 2000s, mainly because of changing winds in the Southern Ocean. In the 1990s, the winds were strong, bringing deep water to the surface; because this water was already rich with carbon, it released more of it to the atmosphere and absorbed less of it back.
In the 2000s, on the other hand, there was less overturning of water in the upper layers of the oceans worldwide (possibly because the changing amount of freshwater affected the buoyancy levels), so the surface of the ocean absorbed more carbon and functioned well as a sink. We can hope, but no one can predict whether this trend will continue, allowing the ocean to continue absorbing large amounts of humanity’s excessive carbon emissions.
Nor are there any adequate ways of the solving the problem now.(17) One idea has sometimes been suggested: to spread iron filings into the ocean, so as to make phytoplankton bloom in profusion. They would absorb a lot of carbon and in dying carry it with them to the ocean floor. This might work, but it also creates a potential toxic phytoplankton overgrowth (“red tide“) and a depletion of oxygen required by other sea life, including fish and coral.(18)
A better idea is ocean farming, both for seaweed and oysters. Kelp is a fast-growing plant that can absorb large amounts of CO2 and produce massive amounts of nutrients that could fulfill the protein requirements of the whole human population. When harvested, kelp is also a fine source of fuel to replace petroleum. They must, of course, be removed from the ocean in order to remove the carbon, which would otherwise be released when the plant dies and decays.
Besides fuel, some kinds of seaweed have another excellent effect: when fed to cows and other ruminant animals they prevent the formation of methane. Cows’ burps and farts account for a major portion of the increasing levels methane resulting from human activities.(19)
Oysters also absorb carbon but they truly excel at filtering nitrogen out of the water. Nitrous oxide (N2O) is a greenhouse gas with 300 times the greenhouse gas action of CO2 in its first 100 years in the atmosphere.
The main component of agricultural fertilizer is ammonium nitrate (NH4NO3). This can turn into NO2 and become a greenhouse gas. As such, it is a huge pollutant, emitting greenhouse gas to the atmosphere and then floating downstream to lakes and oceans, where it depletes the oxygen. But every oyster can filter thirty to fifty gallons of water a day.(20)
Forests as Carbon Sinks
There are about three trillion trees on Earth— about 46 percent fewer now than before agriculture began, and they absorb one-third of our fossil fuel emissions.(21) Nevertheless, more than 15 billion of them are cut down each year. Forests now cover about 30 percent of the earth’s land and carbon emissions from deforestation and related mis-use of land account for about 10-15 percent of the world’s total.(22) As the human population grows and desire higher-quality food, pressure increases to cut trees and convert the land to food production.(23)
Agreements were made at the 2015 Paris COP21 meeting to reward forested nations for conserving and increasing their forests. However, the prices offered cannot suffice to meet the needs of people who live at the edge of forests and whose livelihoods depend on extracting value from those trees. Deforestation is proceeding faster in Malaysia than any other tropical country, and Borneo has lost about 80 percent of its rainforest. For several years Brazil was regarded as exemplary for its commitment to prevent the destruction of its rainforest. However, this pledge has been reversed and bargaining must begin anew. One informed estimate as to the cost of saving the Amazon rainforest is about four percent of the amount the world spends on weapons per year.(24)
It was a shock in 2017 when Science Magazine published a report showing that tropical forests are currently carbon sources, rather than sinks. They are adding more carbon dioxide to the atmosphere than they are removing. Scientists from Woods Hole Research Center used 12 years of satellite imagery, laser remote sensing, and field measurements to compile an accurate record of forest loss and growth. They report that the total of all tropical forests on the planet are releasing about 862 teragrams of carbon, but absorbing only about 437 teragrams. (A teragram is a billion kilograms.) But blame the people, not the trees. It is human activity, chiefly by deforestation, that creates this deplorable situation. The only solution is to invest in restoring forests, both by replanting trees and caring for them adequately, and by adding new ones to the earth. The world will need about one trillion more trees to help prevent runaway global warming. This is certainly a challenge, but it is by no means impossible. Campaigns are already underway.
One such movement was started by a nine-year-old German boy named Felix Finkbeiner, who is now twenty. His organization, Plant-for-the-Planet, now has 55,000 “climate justice ambassadors,” who have trained in one-day workshops to become climate activists in their home communities. Most of them are between the ages nine and 12.(25)
In Tamil Nadu, India, a spiritual man named Sadhguru, founder of the Isha Foundation, is leading a movement called Project GreenHands. His meditators and local citizens will be reclaiming degraded land by planting 114 million trees within five years. He expects that within fifteen years, 30 percent of Tamil Nadu will be covered with a greenery.(26)
Another success story began as a failure. The Sahel is a a belt of desert extending 3,360 miles from the Atlantic Ocean to the Indian Ocean along the southern part of the Sahara, with one of the fastest growing populations in the world.(27) Some years ago a large project was launched to create a belt of trees completely across Africa to block the southward encroachment of the desert. The “Great Green Wall” never fulfilled such hopes, but Senegal, Niger, and Burkino Faso have nevertheless become remarkably green, under the management of local farmers, by modifying traditional agricultural techniques. When the countries were governed by France, all trees on a farm belonged to the state. This law was enacted to keep farmers from cutting down trees, but the effect was the opposite: It created a disincentive to plant trees. Forests declined. Now that trees belong to the farmers again, a movement has spread to grow and protect them. An Australian missionary showed them how to find stumps of old trees in their fields and protect and prune them. The farmers grew other crops around the trees, and taught their neighbors these methods. The idea spread and today large swathes of the Sahel are fertile green farms.(28)
This success story teaches a valuable lesson: It is not necessary to clear land of trees in order to grow crops or cattle, as industrialized farms do. Many trees actually are beneficial for pastures and gardens. Coffee trees, for example, thrive best when grown in the shade.(29)
On the other hand, if the world needs a trillion new trees, they cannot all be planted by farmers, children, and meditators—and fortunately more efficient methods are now available: drones. One company is able to plant about 38,000 trees in a day, shooting seeds that are inside little pods containing a nutrient gel. The National Geographic article explains,
“First, a drone scans the terrain and develops a 3-D map of the area. Then, using the data from this “smart map,” the team develops an algorithm for a unique planting pattern. A “firing drone” uses the algorithm to carry out the planting strategy. The drone flies about six feet above the ground, firing germinated seed pods at a speed that will get them under the soil. One drone operator can manage six drones…
“The system’s designers say their technique is much more efficient and accurate than regular aerial seeding methods. Initial testing in the U.K. found that the species planted by drone had a better survival rate than helicopter spreading that’s more commonly used. Some species even had survival rates nearly identical to hand planting.”(30)
Of used on a huge scale technology could perhaps be the cheapest and quickest way to begin seriously halting global warming; let’s deploy a thousand drones all around the world, spraying seeds of fast-growing or food plants, such as bamboo, hemp, and apple.
Negative Emission Technologies
Our civilization, having poured CO2 into the air for centuries, must quickly stop doing so. By the century’s end, we must be sucking back about 20 billion tons of it each year, locking it away in sinks—including some that Mother Nature never provided.
Scientists are inventing many new “Negative Emissions Technologies” (NET), though not all of them will succeed. Here we should consider a few of the ones that can sequester carbon without introducing new potential dangers, as some of the geo-engineering schemes do. If these NETs work, it will be simply by reducing the levels of greenhouse gas.
Bioenergy with carbon capture and storage (BECCS). Biomass is organic material—living or recently living plants and biological wastes containing carbon. During ordinary industrial processes, it is generally burned and/or released in other ways to the atmosphere as CO2. But instead of emitting that carbon, it is possible to capture it before it even enters the smokestack.
This innovation makes it reasonable to use biomass waste as a source of biofuels such as biogas and bioethanol. Next, the CO2 resulting from burning these fuels should be captured and sequestered in geological formations, where it can stay in place for more than 1,000 years.(31) Biomass used in that way constitutes a form of NET, reducing the absolute amount of CO2 in the atmosphere.
The disadvantage is that BECCS will require a lot of land—an estimated 300 million hectares to remove 10 billion tons of CO2.(32) That’s the size of India! Unfortunately, land is scarce, so there will inevitably be hard decisions about whether to grow biomass on certain plots or reserve them for food production.
Direct Air Capture (DAC). Remarkable NET advances have recently occurred in the technology of capturing carbon directly from ambient air. There is nothing new about the idea; scientists have long been able, with water and energy, to remove CO2 from the air, but the process has been prohibitively costly. However, within the last few years pilot plants have been built that can produce purified, compressed CO2 at a price of $100 to $150 US per ton.
In Squamish, B.C. David Keith’s company, Carbon Engineering, is producing CO2 and turning it into low-carbon intensity fuel.(33) They could be burying it instead, which would make their plant a carbon sink, but for the sake of financing the pilot operation, their current production is approximately emissions-neutral. The company is seeking investors to build a full-scale commercial facility.
In Zurich Switzerland a commercial firm called Climeworks (34) is capturing CO2 in partnership with Audi, whose cars will use their product, a renewable fuel. A greenhouse company also purchases its CO2 for growing vegetables.
Climeworks uses heat from the town’s incinerator, and their factory in Iceland uses geothermic energy. It now costs the company $600 to produce a ton of CO2. Their long term target price is $100 a ton, but they recognize the need for more research to make this possible. Although their goal is to capture one percent of global carbon emissions by 2025, they admit that this cannot be done by commercial investment only; a vast increase in global political will is essential.(35)
Normally the development of such radical new technologies takes decades. That may prove to true also of Direct Air Capture, though Stephen Pacala, who chaired a panel for the US National Academies of Science, expects DAC to be in widespread use within the next decade.(36)
Because the atmosphere circulates constantly, the CO2 is quite evenly distributed around the globe, so it hardly matters where it is removed. A billionaire philanthropist could begin this year building plants designed by David Keith or Climeworks on a desert island over a large saline aquifer or cavern, to remove billions of tons of CO2, and sequester it permanently.
Enhanced Weathering. The soil and oceanic carbon sinks are both affected by weathering. As mentioned above, whenever rain falls in an atmosphere containing greenhouse gases, it absorbs CO2, forming dilute drops of bubbly water—carbonic acid. On the ground it contacts rocks and minerals, combining with them to form carbonate, an alkaline compound that flows in streams to the ocean. There it counteracts the ocean’s acidification and ultimately sinks to the seabed where it remains for thousands of years. Today this natural rock weathering absorbs about 0.3% of global fossil fuel emissions.
The earth’s surface contains abundant minerals that weather in the same way whenever exposed to air. Some scientists propose to dig them up, crush them to a powder, and spread it on the soil, where it will both absorb CO2 and improve agricultural fertility.(37) This NET, called “enhanced weathering,” could sequester very large amounts of carbon, as claimed, but it is too costly to be feasible on the scale required.
However, the idea has some limited utility. Mining always leaves huge piles of tailings near the mines. Some tailings are composed of the minerals required for enhanced weathering. The surface of each pile hardens with exposure to air, but the stuff underneath can indeed be scattered on farmland, where it will bind a little of the excess carbon dioxide and remove it from our atmosphere. Let’s use what’s readily available.
Footnotes for this article can be seen at the Footnotes 2 page on this website (link will open in a new page).
11. All states shall incorporate environmental considerations in developing national dietary food guides

a) Rapporteur: Danny Harvey
A continuous, increasing shift to plant-based diets over time would confer multiple environmental and health benefits, and is a pre-requisite to longterm sustainability, but can only be expected to occur as part of a broader and gradual process of social and environmental enlightenment. Incorporation of environmental consideration in national dietary food guides would lead to a greater emphasis on plant-based foods, in turn influencing dietary decisions and contributing to this long term transition.
b) Rapporteur: Metta Spencer
National food guides are a current manifestation of a discussion that has gone on since prehistoric times, for almost all of us hold strong convictions about what to eat. (The Greek geometer Pythagoras admonished his followers never to eat beans.) For a potentially helpful food guide, see the 2019 Canadian list(1), which recommends: “Eat plenty of vegetables and fruits, whole grain foods and protein foods. Choose protein foods that come from plants more often.”
This official promotion of plant foods reflects the well-founded new emphasis on the effects of dietary choices on the environment. Such a concise list is all the advice that most people need in order to make responsible food choices. If, however, you want to look more deeply into the grounds for choosing particular foods, you will find a complex set of considerations, not all of which yield compatible recommendations.
Dietary choices have far-reaching impacts on our physical and ecological environment, health, economy, cultural traditions and the use of water, energy, and land. Much depends on the technologies that are used to produce the food and bring it to the dinner table. Fortunately, greater efficiencies are being invented that can enable most producers to conserve all these resources. For example, where a farm’s soil is being blown or washed away, or where its waterways are being polluted and eutrophying from the use of chemical fertilizers, the farmers can simply adopt such innovations as no-till agriculture, biochar, composts, and other organic farming practices. Food producers and retailers can adopt numerous simple, achievable solutions at many phases in the supply chain of their product.
Read moreConsumers, on the other hand, have less access to the information required for making good choices when grocery shopping. Yes, in general it is better to eat plants rather than animal products, but this maxim is based on estimating the average effects of various foods. Still, not all packages of the same product, side by side on the grocery shelf, cause equal amounts of greenhouse gas. Indeed, the variations in producing any specific food may differ enormously.(2) For instances, if two bins of apples or potatoes come from different sources, they may have been grown, packaged, transported, and refrigerated in very different ways, so one bin of them may be a vastly better environmental choice than the other. Unfortunately, you cannot discover all those differences just by looking at the apples or potatoes. Indeed, your information is so limited that it is probably more efficient just to follow your national food guide and hope for the best. But here it’s worth discussing some examples of the complexities that may be involved.
Take the growing use of palm oil in food and household products. In Indonesia and Malaysia, jungles and carbon-rich peatlands are being replaced by monocultural plantations — palm trees — grown for their oil. Biodiversity is being destroyed as a result of the loss of habitat of thousands of animal and plant species. For instance, our cousins the Bornean Orangutans, as well as the Sumatran Rhino and Sumatran Elephant, may become extinct. Yet palm oil is in about half of all packaged products in grocery stores. It is in snack foods like ice cream, candy, and instant noodles. It is in laundry detergent, toothpaste and shampoo. Palm oil has become the most widely used vegetable oil on Earth.(3)
Or take almonds, for another complex issue. Almonds are a highly nutritious plant food that every dietary guide would promote. In fact, eating a handful of almonds four or five times a week will lower your blood pressure and cholesterol, if those are your problems.(4) Many people buy almond milk now as an environmentally friendly substitute for cow’s milk.
California’s Central Valley produces 80 percent of the world’s almonds(5) and, unfortunately, California has an ongoing shortage of water. Each nut takes a gallon of water to produce, and the orchards use almost ten percent of the state’s annual agricultural water – more than what the entire population of Los Angeles and San Francisco use.(6) So there is a trade-off between health and at least one environmental challenge. Should we be eating almonds? The national dietary guides do not mention either palm oil or almonds, so we are left to make these choices independently.
National diets always do reflect national cultures and traditions. Thus the 2019 Canadian guide does not urge people to drink cows’ blood, as the Masaai tribes in Africa do, almost painlessly collecting the blood without killing their cattle.(7) Nor does the Canadian guide yet recommend the consumption of insects or mealworms, though these are both extremely efficient end-products of converting garbage into high-quality protein.(8) (If you want to know what various bugs taste like without trying any yourself, read these reports).(9)
No one in the supermarket can help you select potatoes or apples wisely, but a growing field of science, Life Cycle Assessment (LCA), is beginning to quantify the average impacts of various foods on the levels of CO2 in the atmosphere, as well as the appropriateness of their land and energy use. They do this by summing up the multiple impacts throughout the “life cycle” of each food – before it is planted until it is finally consumed.
One such study by Carlsson-Kanyama compared the typical life cycle of carrots, tomatoes, potatoes, pork, rice, and dry peas consumed in Sweden. For example, when calculating the impact of pork, she counted up the effects of using electricity, fuel, and refrigeration coolants in producing and transporting fertilizers; crop farming; drying of crops for the pig food, extraction of oil, producing of fodder, rearing of pigs and storing their manure, slaughtering and cutting them, selling pork at the retailer, transporting to the consumer, cooking, cleaning, and disposing of the garbage. She also included the greenhouse gases emitted through producing and transporting the pesticides, seeds and manure, and producing of such inputs as machinery, buildings, equipment, and services. All of these numbers need to be added together to get a good estimate of pork’s greenhouse gas emissions, which can then be compared to similar estimates for other foods.
We are often advised now to “eat locally,” to avoid the greenhouse gas emissions that result from transporting food long distances. Carlsson-Kanyama found, however, that transporting the food to market is a fairly large component of the energy use, but a small component of the total greenhouse gas resulting from the pork industry. To be sure, energy consumption is important, and so is land use, but there are more factors involved in greenhouse gas emission figures. Indeed, some decisions along the supply chain may even require choosing between minimizing energy and greenhouse gas emissions.
Carlsson-Kanyama found that current food consumption patterns in Sweden and other developed countries exceed the level of sustainability by at least a factor of four. Regrettably, the prospects for achieving sustainable food consumption seem questionable.(10) She also showed that the greenhouse gas emissions were highest for pork and rice and lowest for potatoes, carrots, and dry peas.(11)
That pork is high will surprise no one familiar with current national diet guides, since it is the product of animals. And pork is a less serious source of greenhouse gas than beef or lamb, for pigs are not ruminants and therefore do not emit as much methane while living.
On the other hand, rice is also a high source of greenhouse gas, though it is a plant. Rice is cultivated in paddies that must be flooded at times during the growing season. This flooding creates an environment for microbes that produce a far more potent greenhouse gas than CO2, methane, as well as large amounts of another serious gas, nitrous oxide. It had previously been estimated that 2.5 percent of human-induced climate warming can be attributed to rice farming. This is a serious challenge, since rice provides more calories to the global population than any other food.
Out of concern to reduce these emissions, some researchers recommend flooding rice paddies only intermittently. Unfortunately, new research indicates that this only worsens the matter, and that the impact of rice cultivation is twice as bad for global warming as previously believed.(12) Perhaps Swedes will change from eating rice to potatoes, peas, and carrots, but the culture of India uses rice as a staple, so the prospects for alternative food choices in Asia seem remote.
Millet – which is nearly as high in protein as wheat – may be the most climate-friendly grain, although its cultivation has declined worldwide over the past 50 years. It is a C4 plant, which means that it uses a different enzyme for carbon fixation than C3 plants (that is, most other grains), thereby improving water efficiency.(13) Other edible grasses related to millet are sorghum and teff.
Plants versus Animals
As noted already, national dietary guides are starting to advise us to eat fewer animal products and more plants. This trend is based on incontrovertible evidence that, on the average, producing the latter category of foods causes more environmental damage than the former. One definitive study showing this is by J. Poore and T. Nemecek,(14) whose meta-study compiled the results of 1530 previously published studies by 139 authors. After studying the environmental impacts of 40 food products from 83,700 farms and 1600 processers, packaging types, and retailers in 119 countries, they concluded that “impacts of the lowest-impact animal products typically exceed those of vegetable substitutes, providing new evidence for the importance of dietary change.” Or, as Michael Pollen famously urges us, “Eat food. Not too much. Mostly plants.”
Animals inevitably have considerable impact on the environment because they must consume large quantities of plants throughout their life cycle, while putting on enough weight to become our favorite protein, beef. How many plants? That depends on the method of farming. Cattle today in North America are generally kept in feedlots and fed corn or other grain. There are many serious environmental consequences of this system, including the fact that it takes about 7 kg of grain to produce 1 kg of live beef. For pork, the figure is about 4 kg of grain per kg of weight gain. For poultry it is just over 2, and for several species of farmed fish, it is less than 2.(15)
Why is this kind of beef worse than the other sources of meat? Partly because feedlot cows are fed grain instead of grass, and partly because, unlike pigs, chicken, or fish, they are ruminants. As the eminent scholar Google explains, “Ruminants include cattle, sheep, goats, buffalo, deer, elk, giraffes and camels. These animals all have a digestive system that is uniquely different from our own. Instead of one compartment to the stomach they have four. Of the four compartments the rumen is the largest section and the main digestive centre.” Actually, it is bacteria in the rumen that generates most of its greenhouse gas, methane, which is emitted from both ends of the animal.
Naturally, many scientists are searching for cost-effective ways of reducing ruminants’ methane emissions. The challenge seems to be largely a matter of reducing the microbes in the rumen section of the stomach. This can be done by various kinds of food additives. For example, British scientists fed their cows curry extract, but the animals rejected it. However, some California dairy cows are now given a small amount of red seaweed, mixed with their feed and molasses. Their breath is measured four times a day, and it contains 99 percent less greenhouse gas than when fed normally. A compound in the seaweed disrupts enzymes used by the microbes to produce methane.(16) If this additive turns out to be as cheap and effective as it seems, it may make California’s milk less a source of greenhouse gas, but without mitigating the many other bad effects of keeping cows in feedlots. Other researchers are experimenting by vaccinating cattle. Up to 70 percent reductions are found in methane emissions, and this system could be used on cattle grazing in pastures, not feedlots.(17)
Still, such promising innovations can solve only part of the problem, for the production of meat will still require animals — both ruminants and other herbivores — to consume amounts of plants that could instead feed larger numbers of human beings.
To solve that problem, work is well advanced toward producing meat commercially by cultivating cells in vats. A hamburger from such sources will never have been part of a living animal — a fact that may allay the moral concerns of vegetarians and vegans who object to eating meat because its production involves cruelty to animals. Some companies expect to bring cultured meat to the market by 2021.(18) Many advantages can be expected of this technology. Production will reduce the consumer’s exposure to dangerous farm chemicals such as pesticides and fungicide. The meat will not create antibiotic resistance, which has become a major threat to humankind because antibiotics are fed routinely to livestock. (See the article for plank number 16.) And the environmental impacts of cultured meat will be lower than slaughtered beef or lamb. If methane is produced in the vats, it can be captured and used as fuel, unlike the situation with cows’ burps.(19)
But even if the environmental damage of slaughtered meat can be reduced or even eliminated by culturing meat, many people will oppose eating it because they regard its consumption as harmful to human health. Here the evidence is less conclusive than when it comes to greenhouse gas emissions, or energy or land or water consumption.
Perhaps the most significant study of the health effects of meat-eating comes from a study by the European Prospective Investigation into Cancer and Nutrition, which followed half a million people in ten countries for more than 12 years.(20) The researchers found that eating moderate amounts of red meat had no effect on mortality. The lowest overall mortality rates were in those people eating up to 80 g a day. Non-meat eaters had a higher all-cause death rate. Apparently a low, but not zero, consumption of meat is beneficial for health. However, eating processed meat such as bacon, ham, or salami has a negative effect on health. Eating more than 40g a day of it increases rates of heart disease and cancer.(21)
Another important study is the Million Death Study, headed by Dr. Prabhat Jha, which began in 2002 to send researchers across India, knocking on doors to gather accounts of the symptoms and circumstances behind recent deaths. This mortality study has now reached 3.5 million homes and more than 23 million people. India is a particularly good location for studying the effects of meat-eating, since a large proportion of the population there have been lifelong vegetarians. Jha reports that when he compared those families with other non-vegetarians, he found that their mortality rates were equal, with one exception: vegetarian women die somewhat earlier than non-vegetarian women.
This does not mean, however, that vegetarianism is everywhere dangerous for women; it is probably a specific attribute of Indian culture that explains the difference. Indian women are expected to feed the males and children first and simply eat the leftovers themselves later. Unfortunately, it seems likely that their families consume most of the protein in vegetarian meals, so that the women receive insufficient amounts. In a different society, Jha thinks that vegetarians of both sexes probably have the same mortality rates as meat eaters.(22) His report does not mention any differences between types of meat. Perhaps processed meat is less frequently consumed in India than Europe, but in any case the aforementioned European study indicates that it is probably wise to eat less ham, salami, bacon, sausage, and cold cuts.
More cows, not less, please?
Despite everything noted above, even the most enthusiastic meat-eater cannot deny this hard fact: More people can be fed with a diet of plants than by running the same amount of plants through animals and then consuming their flesh. Since the human population is growing and land, water, and energy are limited, the era of livestock farming must end. The land must be used to grow more forests or crops for human consumption. People must become vegetarians or even vegans to save the planet.
Ah, not so fast! All of these arguments are true, and yet there are reasons for questioning the conclusion. Indeed, some rational experts insist that we world needs more cattle and other large animals, not less. They attribute the worst aspects of climate change to the loss of animal herds.
In the temperate and tropical zones, large amounts of land (about the size of Pennsylvania) are turning into deserts every year and no one knows how to stop the trend. In the Arctic, the situation is even worse; enormous quantities of methane have been frozen in the soil there for many thousands of years. It is thawing now and entering our atmosphere, where it may even lead to the extinction of humankind in a generation or two. In both of these situations, there is an argument that the solution is to send vast herds of big animals out to roam and eat grass.
Allan Savory is an expert on land management. His unusual views originated in Africa, where he observed the encroachment of desertification. Originally, he accepted the common notion that such degraded land needed a rest — that the problem was caused by overgrazing, so he began removing livestock from the pastures and hoping for the land to recover its fertility. Instead, he regularly saw the situation growing worse, with weeds replacing the drying vegetation.
But in earlier times there had been large herds of animals feeding on rich pastures of perennial grass. Because these animals had to protect themselves from predators, they stayed together in close herds, moving together from place to place as they consumed the local grass for a few days, stirred up the top layers of soil with their hooves, and left behind their manure and urine. This is what had kept the soil fertile, Savory concluded. But in modern times, no predators were near and ranchers let their cattle graze indefinitely in the same pasture, where they had no reason to stay together as close herds or to move frequently to different pastures. As a result, the land desertifies.
Savory recommends that ranchers re-create the situations that had kept the soil healthy before. He brings in large numbers of cattle, but uses electric fences to confine them close together in a particular area for just the right length of time before moving them to another pasture. They eat the weeds and fertilize the soil as they go, loosening the top layer a bit. This, Savory shows, can restore the whole landscape to fertility within a couple of years. Again, grass will grow there and sequester carbon, which is exactly what the world needs most right now.(23) And yes, the cattle do continue emitting methane from both ends. If Savory is right, this is a trade-off. Do the cows sequester more or less carbon than they emit? And how many cows would we need to restore the land that has already been degraded? It is clear, and Savory agrees, that over-grazing has destroyed much of the planet’s fertility. He insists that the question is not how many cattle should be kept, but rather how they are managed. Conventional ranching does not work.
Agricultural experts are divided in their opinion about Savory’s approach. There is no consensus on the matter and no easy way to ascertain which view is winning the debate. George Monbiot wrote a scathing article about Savory in The Guardian, but it was not evidently informed by research into the current findings.(24) Many experts concur with Savory’s claims and are recommending that the farmlands throughout the plains of North America be restored to the primeval perennial grasslands and that millions of bison allowed to graze again, perhaps with predators snacking on the perimeter of their herds. These researchers insist that global warming is being worsened by the land being covered today with monocultural cornfields for fattening cows in feedlots.(25) (See the essays about Platform for Survival planks number 12 and 14.) Moises Velaszuez-Manoff has published another interesting confirmation of Savory’s approach about a ranch in California.(26) Clearly, this solution is incompatible with the advice of the new national food guidelines to curtail the consumption of meat. If we are going to increase the number of cattle on the plane, whatever the rationale, they will be part of an economy that produces meat.
An even more ominous reason for increasing the world’s animal population is based on the work of a Russian father and son, Sergei and Nikita Zimov, who are creating the world’s first “Pleistocene Park” in the Arctic of Siberia.(27) They see their project as essential to saving humankind from global warming, since it is essential to keep the permafrost from melting and releasing the locked-up methane into our atmosphere. If that happens, there will be no way to save humankind.
The permafrost, nearly a mile deep in some places, extends across Eurasia and the other Arctic countries at the top of our planet. Nowadays there are trees in the Arctic, but during the Pleistocene period the land was covered in grass during the summer months, and snow in winter. Large herds of huge animals — notably the woolly mammoth — roamed and knocked over any sapling that might aspire to grow there. When human populations began living in the area, they killed the wild animals for food, and there may also have been other causes behind the extinction of those huge animals.
The Zimovs want to bring back herds of big animals and restore the land to grass. They have imported large herbivores and want millions more of them — musk oxen, reindeer, wild horses, bison — plus predators that can corral them into herds. They yearn for the restoration of mammoths(28) and hope that experts on genetics can bring that extinct species back into existence. (Harvard’s geneticist George Church is working to do exactly that, according to Ross Andersen, in his remarkable story about Pleistocene Park.(29)
Trees are dark and in the winter they absorb heat that is transferred into the soil. Grasslands are white with snow in the winter and stay colder – though the snow provides some insulation from the lowest temperature. In the past, ice caverns in the permafrost were six degrees below zero at all times of the year. Now they are only three degrees below zero, and in twenty years, if global warming continues, they will be above zero, so the microbes will come back to life and start producing methane, which will enter the atmosphere. This must not happen! There are now an estimate 750 gigatons of Carbon in the atmosphere, whereas the amount of carbon locked in the permafrost is about 1600 gigatons.
So how can that permafrost be kept frozen solid? If it were possible to push away all the blankets of snow, the soil would stay colder in the winter, but you cannot push enough snow to do that. Big animals could do so. Woolly mammoths and huge bison used to knock over the dark trees and keep the grasslands fertile. In the winter they kicked aside the snow to eat the frozen grass below. Like elephants (which are not ruminants but do eat astounding quantities of grass and emit lots of gas) the mammoths ate constantly and kicked aside enormous quantities of snow—enough to keep the soil frozen. According to the Zimovs, returning millions of huge animals to the wild will save the Arctic and thus possibly our civilization itself.
When the human population expanded, they did so by eating meat obtained by hunting down the huge animals that kept the Arctic a frozen grassland. Now the land is a forest and hardly any animals live there, except the ones that the Zimovs are importing.
Are they right to do so? At this moment, there is no certain answer. If the woolly mammoths come back, they will fart and belch, even while they knock down trees and keep the soil frozen. People will probably eat some of them too. Good luck to them. Good luck to us all.
Footnotes for this article can be seen at the Footnotes 2 page on this website (link will open in a new page).
Overview: Global warming
Authors: Derek Paul and Metta Spencer
This planet is gradually warming, mainly because of the burning of fossil fuels, which add heat-trapping gases to Earth’s atmosphere. The increased temperature changes the climate in other ways too, including the rise in sea levels; ice mass loss in Greenland, Antarctica, the Arctic and mountain glaciers worldwide; shifts in the times when flowers bloom; and extreme weather events.
Life on Earth is dependent on a layer of gases, primarily water vapor, in the lower atmosphere that trap heat from the sun, while radiating some of it back and keeping our planet at a temperature capable of supporting life.
The sunlight that remains trapped is our source of energy and is used by plants in photosynthesis, whereas the remainder is reflected as heat or light back into space. Climate forcing (or “radiative forcing”) is the differential between the amount of sunlight absorbed by Earth and the amount of energy radiated back to space.
Several factors determine the size and direction of this forcing; for example light surfaces are more reflective than dark ones, so geographical regions covered by ice and snow reflect back more than areas covered by dark water or dark forests; this variable is called the “albedo effect.”
Read moreGreenhouse gas and climate change
Human activity is currently generating an excess of long-lived greenhouse gases that don’t dissipate in response to temperature increases, resulting in a continuing buildup of heat. They retain more heat than other gases because they are more transparent to the incoming sunlight than to infrared radiation, which is the form in which heat is radiated back out. Consequently, if the amount of greenhouse gas increases, more heat is trapped in the lower part of the atmosphere, warming the whole planet.(1)
The greenhouse gases include water vapor, carbon dioxide, nitrous oxide, ozone, and various fluorocarbons (freons). Although water vapor is the most abundant of these gases, it is not much affected by human activity and need not concern us here. The alarming climate changes are mainly caused by the increase of gases that contain carbon. Carbon dioxide (CO2) is especially worrisome; its natural sources include the decomposition of living organisms and animal respiration. The main source of excess carbon dioxide emissions is the burning of fossil fuels, while deforestation has reduced the amount of plant life available to turn CO2 into oxygen.
Besides carbon dioxide, the most important greenhouse gases are methane, nitrogen oxide, and some heavier molecules such as the various forms of freon. These are more effective per molecule than CO2 in causing global warming, but are present in much smaller quantities in the atmosphere. The molecule N2O (nitrous oxide) and the freons have the additional property of depleting the ozone in the stratosphere, especially near the poles. Methane is a cause for major concern, as it evaporates from thawed tundra, and it is also trapped within clathrate compounds in the ocean, which can release it when warmed. Methane is also produced copiously by cattle because of their diet and digestive system. Methane has been variously said to be 34 (or more) times as effective as CO2 in producing global warming. The freons in the atmosphere are hugely more effective than CO2, per molecule, at inducing global warming. Much of the atmospheric freon comes from leaking refrigerators and air conditioners, especially old or discarded ones. Preventing freon from reaching the atmosphere is thus a municipal concern.
The quantity of greenhouse gas varies over time. For example, there are seasonal variations. The amount of carbon dioxide in the northern hemisphere increases somewhat in the autumn and winter but decreases in the spring. This happens because plants take in carbon dioxide when they are growing but release it when their leaves fall off and decay.
The composition of Earth’s oceans, land, atmosphere, and plants change continuously. For example, gases can dissolve in the ocean, but they also can evaporate and move around in the wind. At present, the oceans are absorbing slightly more carbon dioxide than they are emitting. The amount of carbon being held inside plants varies; when forests are replaced by annual crops, less of it is contained in plants, so more of it is in the air. The more of it in the air, the more the planet warms. Our warming climate is also creating a feedback loop, a “vicious cycle,” by releasing greenhouse gases from the thawing Arctic permafrost, thereby warming the planet even more.(2)
Climate change is an urgent threat to humanity, since the excess CO2 in the atmosphere diffuses slowly into the ocean, which is rapidly becoming less alkaline. Eventually the ocean will become acid, if the present trend continues, and the dying of the ocean will accelerate. A key factor will be the inability of the ocean’s phytoplankton to produce oxygen. About 252 million years ago the Earth experienced a transition similar to the one the human race is setting off today. That transition is known as the Permian-Triassic (or just the Permian), and resulted from a series of natural causes that put a great deal of CO2 into the atmosphere. The transition eliminated 95 percent of then existing species, and it took forests five million years to recover.
Today we urgently need to keep more greenhouse gas “locked away”, instead of circulating in the atmosphere. Whenever it is kept out of circulation, it is said to be “sequestered” in a “carbon sink.”(3) The ocean is currently a carbon sink because it is absorbing more carbon dioxide than it is emitting. Soil and forests are also great carbon sinks that could sequester even more carbon than at present without being saturated. Unfortunately, today they often are instead “carbon sources” because of the way human beings are mis-using them. When more trees are being felled than grown, and when land is eroding or being flooded, those forests and soil are carbon sources – releasing more greenhouse gas to the atmosphere than they take in and sequester.
There are other important carbon sources too: notably “fossil fuels.” Thousands of years ago large carbon sinks (dead plants and animals) happened to become buried and turned into oil, coal, or methane (a carbon-based greenhouse gas). Then in the eighteenth century, the Industrial Revolution began in Britain. Machines were developed on a large scale for manufacturing and transportation. These new technologies have spread so widely that global civilization today is dependent on energy produced by burning coal, gas, or petroleum products, though doing so releases more and more greenhouse gas into the atmosphere, thereby heating up the planet.
Adding even a small amount of heat to the planet can make a large difference. Already Earth is almost one degree Celsius hotter than during pre-industrial times,(4) and if nothing is done to change the trend, it may become as much as four degrees hotter within the foreseeable future, leading to the catastrophic extinction of life forms.
There are two ways to prevent this: (a) reduce the new emissions of greenhouse gas, and (b) increase the capture and sequestering of greenhouse gas into carbon sinks. Both will require drastic and rapid changes to our current lifestyle, but they should already be proceeding quickly, reducing the amount of greenhouse gas in the atmosphere. Regrettably, however, many people still even deny that there is a problem, sometimes adducing as evidence the snow outside their windows.
The local weather on any given day proves nothing about the global climate. When the planet warms, the additional heat is not distributed evenly around the globe. Ocean and wind currents are circulating constantly. When, for example, glaciers and polar ice melt, the fresh water flows into the ocean, raising the sea level and possibly changing the direction of ocean currents in ways that alter the climate in many localities. More extreme weather events occur — not only heat waves, droughts, and forest fires, but also blizzards, typhoons, hurricanes, and floods.(5)
Thousands of measurements must be collected from all parts of the world to get an overall picture of the climate as it changes. The greenhouse gases are constantly flowing and mixing. With the exception of air samples from, say, expressways or industrial zones, the amount of greenhouse gas in the atmosphere tends to be similar around the world. There is nowhere to hide from global warming.
Acting to limit climate change
This section of the Platform for Survival discusses six policy proposals for changes to allay climate change. If adopted, they will give the world a fair chance of avoiding the impending climate transition, namely, a transition from a generally cool climate to a much warmer climate without ice caps, as was the Permian-Triassic. The prime actions are two: eliminating human-induced emissions of CO2, and sequestering CO2 that is already in the atmosphere. In addition to the natural means of reducing climate change, such as planting trillions of trees, we shall also consider other technological suggestions for sequestering CO2 from the atmosphere on a large scale.
Footnotes for this article can be seen at the Footnotes 2 page on this website (link will open in a new page).
To Post a Comment
Please wait a few seconds for the comments to load at the bottom of this page. Then read the ideas other people have shared and reply or add your own knowledge. The space for comments is in a pale font. It’s good to give your comment a title by selecting it and clicking the “B” (for “boldface”). And you can italicize passages with the “I”, indent, add hyperlinks (with the chain symbol) or even attach a photo or graphic from your hard drive by clicking the paperclip at the right side of the space. Have fun with it!